模型使用指引
操作指引
序号 |
流程环节 |
说明 |
|
---|---|---|---|
1 |
基于微调数据集进行模型微调 |
对于需要个性化定制模型或者在特定任务上追求更高性能表现的场景,往往需要对大语言模型进行模型微调以适应特定任务。微调数据集是模型微调的基础,通过在微调数据集上进行训练从而获得改进后的新模型。 |
|
模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 |
|||
2 |
生成模型服务 |
模型需要部署成功后才可正式提供模型服务。部署成功后,可以对模型服务进行模型调测,并支持在创建Agent时使用或通过模型调用接口调用。 |
|
3 |
通过调测模型,可检验模型的准确性、可靠性及反应效果,发现模型中存在的问题和局限性,确保模型能够在实际应用中正常运行,并且能够准确地预测和处理数据。 |