AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 训练集噪声 更多内容
  • 数据集版本发布失败

    标签的数据少于2张,会导致数据切分失败。建议检查您的标注信息,保证标注多标签的图片,超过2张。 数据切分后,训练和验证包含的标签类别不一样。出现这种情况的原因:多标签场景下时,做随机数据切分后,包含某一类标签的样本均被划分到训练,导致验证无该标签样本。由于这种情况出现

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    rm/dpo:dpo_en_demo 多模态数据(图像):mllm_demo,identity 【可选】注册在dataset_info.json文件数据名称。如选用定义数据请参考准备数据(可选)配置dataset_info.json文件,并将数据存放于dataset_info.json同目录下。

    来自:帮助中心

    查看更多 →

  • 创建声音分类项目

    对项目的简要描述。 “数据” 可在右侧下拉框选择已有数据,或单击“创建数据”前往新建数据。 已有数据:在“数据”右侧的下拉框中选择,仅展示同类型的数据供选择。 创建数据:前往创建数据页面创建一个新的数据。具体操作请参考创建ModelArts数据。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 训练模型

    “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据的次数。 “语种”指文本数据的语言种类。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在 自然语言处理 套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。

    来自:帮助中心

    查看更多 →

  • ModelArts

    发布免费模型 数据的分享和下载 AI Gallery的资产集市提供了数据的分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要的数据,存储至当前帐号的OBS桶或ModelArts的数据列表。分享者可将已处理过的数据发布至AI Gallery。 下载数据 AI Gallery发布数据集

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    String “代理id1.数据名1.租户别名1,代理id2.数据名2.租户别名2”格式的字符串 features 否 Array of DatasetFeatureEntity objects 所选数据特征 label_dataset 否 String 标签数据,最大长度100 label

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    alpaca_en_demo 指定用于训练的数据,数据都放置在此处为identity,alpaca_en_demo表示使用了两个数据,一个是 identity,一个是alpaca_en_demo。如选用定义数据请参考准备数据(可选) template qwen 必须修改。用于指定模板。如果设置

    来自:帮助中心

    查看更多 →

  • 编辑代码(简易编辑器)

    :重命名调试文件、推理文件等文件。 :删除文件或文件夹。 :刷新代码目录。 数据目录:包含数据文件夹及数据实例。系统支持通过Spread编辑器打开csv文件,支持用户在训练工程编辑界面打开数据实例。 任务目录:包含联邦学习训练工程已经执行及正在执行的训练任务存储目录结构。包括codes文件、log文件、meta文件、model文件等。

    来自:帮助中心

    查看更多 →

  • IAM 身份中心

    理、权限管理、账号分配管理、用户管理等操作。 API文档 创建用户 创建用户组 添加系统身份策略 添加自定义身份策略 绑定用户和组 02 入门 带您快速上手使用IAM身份中心,了解IAM身份中心在典型场景下的操作方法。 入门指导 创建用户和权限 账号关联用户和权限 用户登录并访问资源

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    ignored due to the use of a custom kernel" 数据下载和预处理。 本实践中选择使用1GB 79K-record的JSON格式的OSCAR数据。 下载数据。 wget https://huggingface.co/bigscience/mi

    来自:帮助中心

    查看更多 →

  • 创建横向训练型作业

    在弹出的界面,继续配置联邦训练作业的参数,参数配置参考表1。 图3 配置参数 “数据配置文件”的“可选数据列表”: LOCAL运行环境,展示的是通过本地连接器发布的本地数据。 “训练型作业”同一个计算节点只能选一个数据,但是一个作业必须要选两个及两个以上的数据才能做训练。 表1 作业参数说明

    来自:帮助中心

    查看更多 →

  • 数据集版本不合格

    数据版本不合格 出现此问题时,表示数据版本发布成功,但是不满足自动学习训练作业要求,因此出现数据版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。

    来自:帮助中心

    查看更多 →

  • 创建物体检测项目

    可在右侧下拉框选择已有数据,或单击“创建数据”前往新建数据。 已有数据:在“数据”右侧的下拉框中选择,仅展示同类型的数据供选择。 创建数据:前往创建数据页面创建一个新的数据。具体操作请参考创建ModelArts数据。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 创建文本分类项目

    对项目的简要描述。 “数据” 可在右侧下拉框选择已有数据,或单击“创建数据”前往新建数据。 已有数据:在“数据”右侧的下拉框中选择,仅展示同类型的数据供选择。 创建数据:前往创建数据页面创建一个新的数据。具体操作请参考创建ModelArts数据。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    据处理”中对 MRS 中已标注数据进行数据处理,最后通过“运营中心>数据发布”发布数据。在“模型训练服务”中,可以订阅数据进行模型训练。 图1 标注后的数据处理流程图 父主题: 时序数据标注

    来自:帮助中心

    查看更多 →

  • 训练模型

    “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据的次数。 确认信息后,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据的特征数据不够理想,而此数据的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据和目标数据导入系统,详细操作请参见数据。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了