更新时间:2024-10-30 GMT+08:00
分享

语义分割3D

Octopus

  • 目录

    标注文件目录结构

    +--- 1599625710056
    |   +--- 1599625710056.pcd
    |   +--- 1599625710056.json
    +--- 1599625740054
    |   +--- 1599625740054.pcd
    |   +--- 1599625740054.json

    推理文件目录结构

    +--- 1599625710056
    |   +--- 1599625710056.json
    +--- 1599625740054
    |   +--- 1599625740054.json
  • 示例标注/推理文件

    3D语义分割-Octopus.json

    {
      "labels": [
        {
          "label_meta_id": 1,
          "polygon_3d_v2": {
            "ascii_char": "\""
          },
          "shape_type": "polygon_3d_v2",
          "serial_number": 0,
          "label_object_id": -1,
          "name": "car"
        },
        {
          "label_meta_id": 19,
          "polygon_3d_v2": {
            "ascii_char": "4"
          },
          "shape_type": "polygon_3d_v2",
          "serial_number": 0,
          "label_object_id": -1,
          "name": "traffic-sign"
        }
      ],
      "labels_ext": {
        "ascii_string": "000000000000000000000000000000000000000000000000000000000000000000444404444000111000000000000000000000000000000000000000000000000,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"
      }
    }

sementicKITTI

  • 目录

    标注文件目录结构

    +--- labels
    |   +--- 000000.label
    |   +--- 000001.label
    +--- velodyne
    |   +--- 000000.bin
    |   +--- 000001.bin

    推理文件目录结构

    +--- 000000.label
    +--- 000001.label
  • 示例标注/推理文件

    3D语义分割-semanticKITTI.label

    >>> pre = np.fromfile("000000.label", np.uint32) 
    >>> pre 
    array([ 0,  0,  0, ..., 48, 48, 48], dtype=uint32) 
    >>> np.unique(pre) 
    array([       0,        1,       30,       40,       44,       48, 
                  50,       51,       52,       70,       71,       72,
                  80,       81,       99,    65788,    65790,   131324,
              131326,   196860,   196862,   589854,   983070,  1572875,
             1638411, 12713994, 12779530, 12845066, 12976138], dtype=uint32) 
    >>> post = pre & 0xFFFF 
    >>> post 
    array([ 0,  0,  0, ..., 48, 48, 48], dtype=uint32) 
    >>> np.unique(post) 
    array([  0,   1,  10,  11,  30,  40,  44,  48,  50,  51,  52,  70,  71,
            72,  80,  81,  99, 252, 254], dtype=uint32)

相关文档