AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    分割 深度学习训练集 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据训练。De

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    。 word2vec_path 是 word2vec模型存放在OBS上的完整路径。 示例 图片分类预测我们采用Mnist数据作为流的输入,通过加载预训练的deeplearning4j模型或者keras模型,可以实时预测每张图片代表的数字。 1 2 3 4 5 6 CREATE SOURCE

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    。 word2vec_path 是 word2vec模型存放在OBS上的完整路径。 示例 图片分类预测我们采用Mnist数据作为流的输入,通过加载预训练的deeplearning4j模型或者keras模型,可以实时预测每张图片代表的数字。 1 2 3 4 5 6 CREATE SOURCE

    来自:帮助中心

    查看更多 →

  • 功能介绍

    性,并可在组织内共享数据。 图10 数据均衡性分析 图11 共享样本数据库管理 全流程可视化自主训练,用户可选择网络结构、数据利用云端算力进行自动学习,也可以利用notebook进行算法开发;支持基于预训练模型进行模型的自主训练与迭代优化,提高模型训练效率和精度。 图12 新建工程

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据进行学习训练生成新的数据的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据进行学习训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    1:置信度偏低。 2:基于训练数据的聚类结果和预测结果不一致。 3:预测结果和训练同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据的特征分布存在较大偏移。 6:图像的高宽比与训练数据的特征分布存在较大偏移。 7:图像的亮度与训练数据的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    1:置信度偏低。 2:基于训练数据的聚类结果和预测结果不一致。 3:预测结果和训练同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据的特征分布存在较大偏移。 6:图像的高宽比与训练数据的特征分布存在较大偏移。 7:图像的亮度与训练数据的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据进行特征处理。 在旧版

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三种算法类型,XGBoost支持“分类”和“回归”两种任务类型。 图2 新建作业 在弹出的界面进行数据选择,选择两方数据作为整个作业的数据,必须选择一个当前代理的数据,另一个数据可以来自空间中的任

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    、课件制作等场景模拟真人配音,提升数字内容生产效率。 算法运行机制 训练阶段: 用户上传一段真人语音音频及授权书作为输入。 音频经过人工安全审核和授权认证后,由训练人员标注用于训练的音频数据,使用深度学习算法训练生成数字人声音模型。 推理阶段: 用户上传一段文本作为输入文本内容,由系统自动审核。

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    1:置信度偏低。 2:基于训练数据的聚类结果和预测结果不一致。 3:预测结果和训练同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据的特征分布存在较大偏移。 6:图像的高宽比与训练数据的特征分布存在较大偏移。 7:图像的亮度与训练数据的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 数据标注场景介绍

    针对同一个数据进行标注管理。 团队标注功能当前仅支持“图像分类”、“物体检测”、“文本分类”、“命名实体”、“文本三元组”、“语音分割”类型的数据。 不同类型数据支持的功能列表 其中,不同类型的数据,支持不同的功能,详细信息请参见表1。 表1 不同类型数据支持的功能 数据集类型

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;模型精度较轻量级提升约20%

    来自:帮助中心

    查看更多 →

  • 训练任务

    模型和版本。 选择数据。 用户从数据资产中的数据和数据缓存中选择数据,最多支持添加5个数据。 图5 选择数据 单击“创建”,在任务列表或分组可查看新建训练任务。 训练任务相关操作 在“训练任务”列表,可对训练任务进行以下操作: 表1 训练任务相关操作 任务 操作步骤 查找任务

    来自:帮助中心

    查看更多 →

  • 分割分区

    分割分区 用户可以使用分割分区的命令来将一个分区分割为两个或多个新分区。当分区数据太大,或者需要对有MAXVALUE的范围分区/DEFAULT的列表分区新增分区时,可以考虑执行该操作。分割分区可以指定分割点将一个分区分割为两个新分区,也可以不指定分割点将一个分区分割为多个新分区。

    来自:帮助中心

    查看更多 →

  • 分割分区

    分割分区 用户可以使用分割分区的命令来将一个分区分割为两个或多个新分区。当分区数据太大,或者需要对有MAXVALUE的范围分区/DEFAULT的列表分区新增分区时,可以考虑执行该操作。分割分区可以指定分割点将一个分区分割为两个新分区,也可以不指定分割点将一个分区分割为多个新分区。

    来自:帮助中心

    查看更多 →

  • 分割分区

    分割分区 用户可以使用分割分区的命令来将一个分区分割为两个或多个新分区。当分区数据太大,或者需要对有MAXVALUE的范围分区/DEFAULT的列表分区新增分区时,可以考虑执行该操作。分割分区可以指定分割点将一个分区分割为两个新分区,也可以不指定分割点将一个分区分割为多个新分区。

    来自:帮助中心

    查看更多 →

  • 分割分区

    分割分区 用户可以使用分割分区的命令来将一个分区分割为两个或多个新分区。当分区数据太大,或者需要对有MAXVALUE的范围分区/DEFAULT的列表分区新增分区时,可以考虑执行该操作。分割分区可以指定分割点将一个分区分割为两个新分区,也可以不指定分割点将一个分区分割为多个新分区。

    来自:帮助中心

    查看更多 →

  • 时序预测

    置“测试数据分割量”,即从训练的数据尾部,分割出去的数据比例,示例为“0.2”。如果用户在数据界面同时上传了训练和测试,可以选择“从数据读入”,并相应选择“测试数据”和“测试数据实例”即可。 单击“加载数据”左侧的图标,加载训练和测试。 运行完成后,可以在下方看

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了