AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    分割 深度学习训练集 更多内容
  • 排序策略-离线排序模型

    的情况。 批量大小 一次训练所选取的样本数。 训练数据切分数量 将整个数据切分成多个子数据,依次训练,每个epoch训练一个子数据。 融合多值特征 将多值特征的多个embedding融合成一个embedding。 融合线性部分 是否使用模型架构中的线性部分。 固定哈希结构

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 是否支持图像分割任务的训练?

    是否支持图像分割任务的训练? 支持。您可以使用以下三种方式实现图像分割任务的训练。 您可以在AI Gallery订阅相关图像分割任务算法,并使用订阅算法完成训练。 如果您在本地使用ModelArts支持的常用框架完成了训练脚本,可以使用自定义脚本创建训练作业。 如果您在本地开发的

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    流程环节 说明 1 基于微调数据进行模型微调 创建微调数据 收藏预置微调数据 对于需要个性化定制模型或者在特定任务上追求更高性能表现的场景,往往需要对大语言模型进行模型微调以适应特定任务。微调数据是模型微调的基础,通过在微调数据上进行训练从而获得改进后的新模型。 创建模型微调任务

    来自:帮助中心

    查看更多 →

  • 自动学习为什么训练失败?

    如果OBS路径符合要求,请您按照服务具体情况执行3。 自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。 物体检测训练失败请检查数据标注的方式是否正确,目前自动学习仅支持矩形标注。 预测分析训练失败请检查标签列的选取。标签列目前支持离散和连续型数据,只能选择一列。

    来自:帮助中心

    查看更多 →

  • 自动学习训练作业失败

    导致训练失败或无法进行。建议完善数据后,再启动训练。 数据文件有以下限制: 如果您使用2u8g规格,测试建议数据文件应小于10MB。当文件大小符合限制要求,如果存在极端的数据规模(行数列数之积)时,仍可能会导致训练失败,建议的数据规模低于10000。 如果您使用8u32g规格

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    已订购大模型微调服务API在线调用-SFT局部调优,订购方法请参见购买AI原生应用引擎按需计费资源。 已具备格式为“对话文本”的微调数据,具体请参考创建微调数据或收藏预置微调数据。 需要具备AI原生应用引擎管理员或开发者权限,权限申请操作请参见AppStage组织成员申请权限。 创建微调任务

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    提供实验管理能力,用户通常需要调整数据、调整超参等进行多轮作业从而选择最理想的作业,模型训练支持统一管理多个训练作业,方便用户选择最优的模型 提供训练作业的事件信息(训练作业生命周期中的关键事件点)、训练日志(训练作业运行过程和异常信息)、资源监控(资源使用率数据)、Cloud Shell(登录训练容器的工

    来自:帮助中心

    查看更多 →

  • 超过最大递归深度导致训练作业失败

    超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。 处理方法

    来自:帮助中心

    查看更多 →

  • 产品术语

    算法、特征分析及处理SDK,帮助开发者提速AI应用开发,保障模型应用效果。 训练数据 用于训练模型的数据实例。 Y 验证数据 模型验证的数据

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据准备:大模型的性能往往依赖于大量的训练数据。因此,数据准备是模型开发的第一步。首先,需要根据业务需求收集相关的原

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    变量权重 训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 数据配置 训练数据 选择数据集中已发布的数据,这里数据需为再分析类型数据,同时需要完成加工作业,加工时需选择气象预处理算子。 训练 选择训练数据中的部分时间数据,训练数据尽可能多一些。

    来自:帮助中心

    查看更多 →

  • 排序策略

    名称是part-00000开头的文件,需要用户提供文件的OBS路径。 最大迭代轮数 模型训练的最大迭代轮数,默认50。 提前终止训练轮数 在测试上连续N轮迭代AUC无提高时,迭代停止,训练提前结束,默认5。 初始化方法 模型参数的初始化方法。 normal:正态分布 平均值:默认0

    来自:帮助中心

    查看更多 →

  • ModelArts

    发布免费模型 数据的分享和下载 AI Gallery的资产集市提供了数据的分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要的数据,存储至当前帐号的OBS桶或ModelArts的数据列表。分享者可将已处理过的数据发布至AI Gallery。 下载数据 AI Gallery发布数据集

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    tensorflow version print(tf.__version__) 下载Fashion MNIST图片数据,该数据包含了10个类型共60000张训练图片以及10000张测试图片。 1 2 3 # download Fashion MNIST dataset fashion_mnist

    来自:帮助中心

    查看更多 →

  • 执行作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业 在弹出的界面配置执行参数,配置执行参数可选择常规配置与自定义配置。填写完作业参数,单击“确定”即可开始训练作业。 常规配置:通过界面点选

    来自:帮助中心

    查看更多 →

  • 分割线

    分割线 分割线是装饰组件的一种,用于分割组件,起装饰作用,包括分割线和竖分割线。 以分割线16-1为例,在大屏设计页面,从“全部组件 > 装饰”中,拖拽“分割线16-1”组件至画布空白区域,如图1。 图1 分割线16-1 页面背景色设置为白色时,分割线组件很难显示出来。使用该组件时,请避免使用白色背景。

    来自:帮助中心

    查看更多 →

  • 分割线

    分割线 分割线为样式型组件,用于分割字段,起装饰作用。 在表单设计页面,从“样式布局”中,拖拽“分割线”组件至表单设计区域,如图1所示。 图1 拖拽分割线组件到设计区并设置属性 状态:设置分割线的状态,如普通、隐藏。 普通:设置为普通后,页面上可正常显示分割线。 隐藏:设置为隐藏后,页面上的分割线将不再显示。

    来自:帮助中心

    查看更多 →

  • 分割线

    分割线 分割线为样式型组件,用于分割字段,起装饰作用。 在左侧组件区域,选择“分割线”组件,并拖拽至设计区域,如图1所示。 图1 拖拽分割线组件到设计区并设置属性 基础配置 文本:设置分割线上显示的文字。输入内容不得超过32个字符。 分割线样式:选择分割线的样式,如虚线、点线、双线或实线。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据,也可以使用自己准备的数据。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了