字符串相似度匹配算法 更多内容
  • 文本相似度(高级版)

    文本相似(高级版) 功能介绍 对文本语义相似计算。 具体Endpoint请参见终端节点。 本API免费调用,调用限制为2次/秒。 文本相似基础版和高级版基于不同算法实现,对相同文本,基础版和高级版的结果有所差别。根据测试数据,高级版效果一般优于基础版。 调试 您可以在API

    来自:帮助中心

    查看更多 →

  • 文本相似度(基础版)

    文本相似(基础版) 功能介绍 对文本进行语义相似计算。 具体Endpoint请参见终端节点。 调用华为云NLP服务会产生费用,本API支持使用基础套餐包,购买时请在 自然语言处理 价格计算器中查看基础套餐包和领域套餐包支持的API范围。 也可使用文本相似(高级版)接口,详情请见

    来自:帮助中心

    查看更多 →

  • 召回策略

    最近邻域数 在UserCF算法中使用,生成的相似矩阵中为每个用户保留的若干个最相似用户。默认为100。 最小交叉 物品和物品之间被同一用户行为记录的数量,计算相似时,过滤掉共同记录小于最小交叉的item。 默认值:1。 物品活跃 物品过滤用户的活跃阈值。 取值范围:1-10000。

    来自:帮助中心

    查看更多 →

  • 子图匹配算法(subgraph matching)

    子图匹配算法(subgraph matching) 功能介绍 根据输入参数,执行subgraph matching算法。 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。

    来自:帮助中心

    查看更多 →

  • 紧密中心度算法(closeness)

    紧密中心算法(closeness) 功能介绍 根据输入参数,执行紧密中心算法。 紧密中心算法(Closeness Centrality)计算一批节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/h

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(betweenness)

    中介中心算法(betweenness) 功能介绍 根据输入参数,执行中介中心算法。 中介中心算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 URI POST /ges/v1.0/{project_id}/hyg/{g

    来自:帮助中心

    查看更多 →

  • 标签传播算法(Label Propagation)

    标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 适用场景 标签传播算法(Label Propagation)适用于资讯传播、广告推荐、社区发现等场景。 参数说明 表1 标签传播算法(Label Propagation)参数说明

    来自:帮助中心

    查看更多 →

  • 问答诊断

    根据初筛结果,对用户问进行语义识别,并根据相似得分重新排序,按得分倒序展示结果。 说明: “score”的范围为0~1。请参见 初筛结果和重排序结果对比示例了解初筛结果和重排序结果的不同。 闲聊结果 当重排序结果的最高相似得分低于一定阈值时,系统会根据预置的闲聊问答语料进行匹配,并展示匹配到的闲聊问题及答案。

    来自:帮助中心

    查看更多 →

  • 应用场景

    自然语言处理适用于智能问答系统、文本分析、内容推荐、翻译等场景。 智能问答系统 通过中文分词、短文本相似、命名实体识别等相关技术计算两个问题对的相似,可解决问答、对话、语料挖掘、知识库构建等问题。 文本分析 通过关键词提取、文本聚类、主题挖掘等算法模型,挖掘突发事件、公众话题导向,进行话题发现、趋势发现等。多维

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(betweenness)(2.2.4)

    中介中心算法(betweenness)(2.2.4) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 directed 否 是否考虑边的方向 Boolean true或者false true weight 否 边上权重 String 空或字符串 *

    来自:帮助中心

    查看更多 →

  • 紧密中心度算法(Closeness Centrality)

    紧密中心算法(Closeness Centrality) 概述 紧密中心算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(Betweenness Centrality)

    中介中心算法(Betweenness Centrality) 概述 中介中心算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域

    来自:帮助中心

    查看更多 →

  • 如何快速搜索摄像机匹配的算法

    如何快速搜索摄像机匹配算法 登录MAP工具。 选择“基于款型匹配算法”。 在搜索框中输入摄像机型号,单击“搜索”,查询摄像机匹配算法。 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 服务支持使用哪些算法对图进行分析?

    图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 Louvain算法 基于模块的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区

    来自:帮助中心

    查看更多 →

  • 分子搜索

    输入小分子:可以通过输入SMILES、上传文件或者直接绘制输入小分子。最终以SMILES为准。 选择算法:可以选择ECFP4 Tanimoto相似或者骨架搜索。ECFP4 Tanimoto相似是通过ECFP4指纹计算Tanimoto相似来搜索相似比较高的小分子。骨架搜索是通过设置分子骨架搜索具有相同骨架的分子。

    来自:帮助中心

    查看更多 →

  • 算法一览表

    图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 Louvain算法 基于模块的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区

    来自:帮助中心

    查看更多 →

  • 度数关联度算法(Degree Correlation)

    度数关联算法(Degree Correlation) 概述 度数关联算法(Degree Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联算法(Degree Correlation)适用于衡量图的结构特性场景。

    来自:帮助中心

    查看更多 →

  • ModelArts Pro的应用场景和用户群体

    自然语言处理套件 通用文本分类场景。 智能问答 通过中文分词、短文本相似、命名实体识别等自然语言处理相关技术,计算两个问题对的相似,可解决问答、对话、语料挖掘、知识库构建等问题。 内容推荐 通过文本分类预测模型,精确匹配出语义相似的内容,快速构建内容推荐场景。 视觉套件 商品识别 无人超

    来自:帮助中心

    查看更多 →

  • 技能管理中有多个技能,如何匹配技能

    技能管理中有多个技能,如何匹配技能 智能问答机器人 通过模型判断用户问法与语料的相似得分,选择使用相似得分高的技能,无法人工干预模型匹配。 父主题: 智能 问答机器人

    来自:帮助中心

    查看更多 →

  • 如何快速搜索算法匹配的摄像机

    如何快速搜索算法匹配的摄像机 登录MAP工具。 选择“基于算法匹配款型”。 选择搜索方式后,输入算法名称/规格,单击“搜索”,查询算法匹配的摄像机。 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 创建元素链接

    片”、“片子”。 权重:匹配问答与配置元素的近似时,该元素所占比例。例如问答“不止英雄影片的主演是谁”相似计算时,本体“电影”所占比例大小。 实体实例权重:匹配问答与配置元素的近似时,该元素对应实例所占比例。例如问答“不止英雄影片的主演是谁”相似计算时,实体实例“不止英雄”所占比例大小。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了