字符串相似度算法比较 更多内容
  • 文本相似度(高级版)

    文本相似(高级版) 功能介绍 对文本语义相似计算。 具体Endpoint请参见终端节点。 本API免费调用,调用限制为2次/秒。 文本相似基础版和高级版基于不同算法实现,对相同文本,基础版和高级版的结果有所差别。根据测试数据,高级版效果一般优于基础版。 调试 您可以在API

    来自:帮助中心

    查看更多 →

  • 文本相似度(基础版)

    文本相似(基础版) 功能介绍 对文本进行语义相似计算。 具体Endpoint请参见终端节点。 调用华为云NLP服务会产生费用,本API支持使用基础套餐包,购买时请在 自然语言处理 价格计算器中查看基础套餐包和领域套餐包支持的API范围。 也可使用文本相似(高级版)接口,详情请见

    来自:帮助中心

    查看更多 →

  • 紧密中心度算法(closeness)

    紧密中心算法(closeness) 功能介绍 根据输入参数,执行紧密中心算法。 紧密中心算法(Closeness Centrality)计算一批节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/h

    来自:帮助中心

    查看更多 →

  • 分子搜索

    传文件或者直接绘制输入小分子。最终以SMILES为准。 选择算法:可以选择ECFP4 Tanimoto相似或者骨架搜索。ECFP4 Tanimoto相似是通过ECFP4指纹计算Tanimoto相似来搜索相似比较高的小分子。骨架搜索是通过设置分子骨架搜索具有相同骨架的分子。

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(betweenness)

    中介中心算法(betweenness) 功能介绍 根据输入参数,执行中介中心算法。 中介中心算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 URI POST /ges/v1.0/{project_id}/hyg/{g

    来自:帮助中心

    查看更多 →

  • 标签传播算法(Label Propagation)

    标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 适用场景 标签传播算法(Label Propagation)适用于资讯传播、广告推荐、社区发现等场景。 参数说明 表1 标签传播算法(Label Propagation)参数说明

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(betweenness)(2.2.4)

    中介中心算法(betweenness)(2.2.4) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 directed 否 是否考虑边的方向 Boolean true或者false true weight 否 边上权重 String 空或字符串 *

    来自:帮助中心

    查看更多 →

  • 问答诊断

    及扩展问,并按相似得分降序展示搜索结果。 初筛是比较粗略的相似匹配算法,快速的召回一批比较有可能的问题,然后利用重排序算法去精确排序。初筛一般更关心词语是否出现,重排序对顺序、词组等的特征会综合考虑。 重排序结果 根据初筛结果,对用户问进行语义识别,并根据相似得分重新排序,按得分倒序展示结果。

    来自:帮助中心

    查看更多 →

  • 紧密中心度算法(Closeness Centrality)

    紧密中心算法(Closeness Centrality) 概述 紧密中心算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(Betweenness Centrality)

    中介中心算法(Betweenness Centrality) 概述 中介中心算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域

    来自:帮助中心

    查看更多 →

  • 召回策略

    最近邻域数 在UserCF算法中使用,生成的相似矩阵中为每个用户保留的若干个最相似用户。默认为100。 最小交叉 物品和物品之间被同一用户行为记录的数量,计算相似时,过滤掉共同记录小于最小交叉的item。 默认值:1。 物品活跃 物品过滤用户的活跃阈值。 取值范围:1-10000。

    来自:帮助中心

    查看更多 →

  • 比较函数

    比较函数 表1 比较函数列表 MySQL数据库 GaussDB数据库 差异 COALESCE() 支持,存在差异 union distinct场景下,返回值精度与MySQL不完全一致。 当第一个不为NULL的参数的后续参数表达式中存在隐式类型转换错误时,MySQL会忽略该错误,G

    来自:帮助中心

    查看更多 →

  • 比较函数

    比较函数 表1 比较函数列表 MySQL数据库 GaussDB 数据库 差异 COALESCE() 支持,存在差异 union distinct场景下,返回值精度与MySQL不完全一致。 当第一个不为NULL的参数的后续参数表达式中存在隐式类型转换错误时,MySQL会忽略该错误,G

    来自:帮助中心

    查看更多 →

  • 度数关联度算法(Degree Correlation)

    度数关联算法(Degree Correlation) 概述 度数关联算法(Degree Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联算法(Degree Correlation)适用于衡量图的结构特性场景。

    来自:帮助中心

    查看更多 →

  • Node2vec算法

    /Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景 Node2vec算法适用于节点功能相似比较、节点结构相似比较、社团聚类等场景。 参数说明 表1 Node2vec算法参数说明 参数 是否必选 说明 类型 取值范围 默认值 P 否 回退参数 Double - 1

    来自:帮助中心

    查看更多 →

  • 应用场景

    自然语言处理适用于智能问答系统、文本分析、内容推荐、翻译等场景。 智能问答系统 通过中文分词、短文本相似、命名实体识别等相关技术计算两个问题对的相似,可解决问答、对话、语料挖掘、知识库构建等问题。 文本分析 通过关键词提取、文本聚类、主题挖掘等算法模型,挖掘突发事件、公众话题导向,进行话题发现、趋势发现等。多维

    来自:帮助中心

    查看更多 →

  • 备份方式比较

    备份方式比较 您可结合自己的实际需求,再根据SAP HANA备份方案的优劣势,选择您的备份方案。SAP HANA备份方案的优劣势如表1所示。 表1 SAP HANA备份方案比较 特点 基于文件的备份 基于Backint的备份 基于存储快照的备份 优势 支持备份的完整性校验 支持加密

    来自:帮助中心

    查看更多 →

  • 标签传播算法(label_propagation)

    建图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm

    来自:帮助中心

    查看更多 →

  • 比较函数

    比较函数 表1 比较函数列表 MySQL数据库 GaussDB数据库 差异 COALESCE() 支持,存在差异 union distinct场景下,返回值精度与MySQL不完全一致。 当第一个不为NULL的参数的后续参数表达式中存在隐式类型转换错误时,MySQL会忽略该错误,G

    来自:帮助中心

    查看更多 →

  • 比较函数

    比较函数 表1 比较函数列表 MySQL数据库 支持计划外ALT COALESCE() 支持 INTERVAL() 支持 GREATEST() 支持 LEAST() 支持 ISNULL() 支持 父主题: 计划外应用无损透明

    来自:帮助中心

    查看更多 →

  • 比较函数

    比较函数 表1 比较函数 SQL函数 返回类型 描述 value1 = value2 BOOLEAN 如果 value1 等于 value2 返回 TRUE; 如果 value1 或者 value2 为 NULL 返回 UNKNOWN。 value1 <> value2 BOOLEAN

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了