keras和tensorflow 更多内容
  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容:

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

  • 规格限制

    规格限制 是否支持sudo提权? 是否支持apt-get? 是否支持Keras引擎? 是否支持caffe引擎? 是否支持本地安装MoXing? Notebook支持远程登录吗? 父主题: Standard Notebook

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    /v2/{project_id}/training-job-engines 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID名称。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 total Integer

    来自:帮助中心

    查看更多 →

  • 导入模型

    导入模型 如何将Keras的.h5格式模型导入到ModelArts中 导入模型时,模型配置文件中的安装包依赖参数如何编写? 使用 自定义镜像 创建在线服务,如何修改默认端口 ModelArts平台是否支持多模型导入 导入AI应用对于镜像大小的限制 父主题: 模型管理

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    conda CPU 是 是 tensorflow1.15-mindspore1.7.0-cann5.1.0-euler2.8-aarch64 Ascend+ARM算法开发训练基础镜像,AI引擎预置TensorFlowMindSpore Ascend 是 是 spark2.4.5-ubuntu18

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 环境配置故障

    环境配置故障 Notebook提示磁盘空间已满 Notebook中使用Conda安装Keras 2.3.1报错 Notebook中安装依赖包报错ERROR: HTTP error 404 while getting xxx Notebook中已安装对应库,仍报错import numba

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持哪些模型?

    om”格式的模型上传文件包含caffe模型文件“.caffemodel”“.prototxt”配置文件“.cfg”,或tensorflow的“.pb”模型文件配置文件“.cfg”。 确认待转换的模型算子是否为“.om”模型支持的TensorFlowCaffe算子边界 并非所有模型

    来自:帮助中心

    查看更多 →

  • Tensorflow多节点作业下载数据到/cache显示No space left

    server(简称ps)worker两种角色,psworker会被调度到相同的机器上。由于训练数据对于ps没有用,因此在代码中ps相关的逻辑不需要下载训练数据。如果ps也下载数据到“/cache”,实际下载的数据会翻倍。例如只下载了2.5TB的数据,程序就显示空间不够而失败,因为/cache只有4TB的可用空间。

    来自:帮助中心

    查看更多 →

  • TensorFlow-1.8作业连接OBS时反复出现提示错误

    默认的显示等级,显示所有信息 os.environ["TF_CPP_MIN_ LOG _LEVEL"]='2' # 只显示warningError os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 只显示Error 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

  • 准备工作

    该文件后会出现一个Notebook Editor,可以在里面编辑运行cell。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    支持基于TensorFlowPyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。 TensorFlow引擎的训练脚

    来自:帮助中心

    查看更多 →

  • 在Notebook中添加自定义IPython Kernel

    在Notebook中添加自定义IPython Kernel 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    开发环境预置镜像分为X86ARM两类: 表1 X86预置镜像列表 引擎类型 镜像名称 PyTorch pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 pytorch1.4-cuda10

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果使用其他引擎,请将命令中“TensorFlow-1.8”替换为其他引擎的名称及其版本号。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库?

    序包等多种环境,包括TensorFlow、MindSpore、PyTorchSpark等。您也可以使用pip install在Notobook或Terminal中安装外部库。 在Notebook中安装 例如,通过JupyterLab在“TensorFlow-1.8”的环境中安装Shapely。

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    Ascend+ARM算法开发训练基础镜像,AI引擎预置MindSpore Ascend 是 是 tensorflow1.15-cann5.1.0-py3.7-euler2.8.3 Ascend+ARM算法开发训练基础镜像,AI引擎预置TensorFlow Ascend 是 是 mindspore1

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlowJupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建Tensorboard

    创建Tensorboard TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard当前只支持基于TensorFlow引擎的训练作业。同一个用户的多个项目,创建Tensorboard任

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了