keras和tensorflow 更多内容
  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() 父主题: 基于CodeArts IDE Online、TensorFlowJupyter

    来自:帮助中心

    查看更多 →

  • 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”

    'NoneType' object has no attribute 'dtype'” 问题现象 代码在Notebook的keras镜像中可以正常运行,在训练模块使用tensorflow.keras训练报错时,出现如下报错:AttributeError: 'NoneType' object has no

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 如何将Keras的.h5格式模型导入到ModelArts中

    如何将Keras的.h5格式模型导入到ModelArts中 ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从KerasTensorFlow操作指导请参见其官网指导。 父主题:

    来自:帮助中心

    查看更多 →

  • 使用TensorFlow进行线性回归

    使用TensorFlow进行线性回归 首先在FunctionGraph页面将tensorflow添加为公共依赖 图1 tensorflow添加为公共依赖 在代码中导入tensorflow并使用 import json import random # 导入 TensorFlow 依赖库

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    进入刚刚创建的OBS桶页面,创建文件夹dataimg,并将basicClass.py上传。 进入data文件夹,将刚刚下载的四个gz文件上传。 机器学习范例 本篇范例采用tensorflow官网的ml example,可参考https://www.tensorflow.org/tutorials/keras/classification

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习已经广泛应用于图像分类、图像识别 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano 作为后端运行,导入来自Keras的神经网

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习已经广泛应用于图像分类、图像识别语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano 作为后端运行,导入来自Keras的神经网

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    tag命令给上传镜像打标签。 #regiondomain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/tensorflow:2

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 开发用于预置框架训练的代码

    odelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数训练输出路径参数。这四种输入搭建了用户代码ModelArts Standard后台交互的桥梁。 代码目录路径 您需要在OBS桶中指定代码目录,并将训练代码、依赖

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • 自定义脚本代码示例

    自定义脚本代码示例 Tensorflow TensorFlow存在两种接口类型,keras接口tf接口,其训练保存模型的代码存在差异,但是推理代码编写方式一致。 训练模型(keras接口) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    来自:帮助中心

    查看更多 →

  • 推理专属预置镜像列表

    推理基础镜像详情PyTorch(CPU/GPU) ModelArts提供了以下PyTorch(CPU/GPU)推理基础镜像: 引擎版本一:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本二:pytorch_1.8.2-cuda_11

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    rFlow2.0的基础与高阶操作,TensorFlow2.0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数验证集,参数估计、最大似然估计贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    目前支持以下几种广播场景: NHWC+NHWC,NHWC+scalar NHWC +1 1 1 1 NHWC+WHWC+WHW+W(备注,W维度做广播) NCHW + NH1CHWC + H1CHW + H1 HWC + 1 WC(备注,H维度做广播) 说明: 两个tensor的输入顺序可以互换。

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    使用Tensorflow训练神经网络 应用场景 当前主流的大数据、AI训练推理等应用(如TensorflowCaffe)均采用容器化方式运行,并需要大量GPU、高性能网络存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器

    来自:帮助中心

    查看更多 →

  • Notebook中使用Conda安装Keras 2.3.1报错

    Notebook中使用Conda安装Keras 2.3.1报错 问题现象 使用Conda安装Keras 2.3.1版本报错。 原因分析 可能是Conda网络不通,请使用pip install命令安装。 解决方法 执行 !pip install keras==2.3.1命令安装Keras。 父主题: 环境配置故障

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了