keras与tensorflow 更多内容
  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”

    代码在Notebook的keras镜像中可以正常运行,在训练模块使用tensorflow.keras训练报错时,出现如下报错:AttributeError: 'NoneType' object has no attribute 'dtype'。 原因分析 训练镜像的numpy版本Notebook中不一致。

    来自:帮助中心

    查看更多 →

  • 如何将Keras的.h5格式模型导入到ModelArts中

    如何将Keras的.h5格式模型导入到ModelArts中 ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从KerasTensorFlow操作指导请参见其官网指导。 父主题:

    来自:帮助中心

    查看更多 →

  • 使用TensorFlow进行线性回归

    使用TensorFlow进行线性回归 首先在FunctionGraph页面将tensorflow添加为公共依赖 图1 tensorflow添加为公共依赖 在代码中导入tensorflow并使用 import json import random # 导入 TensorFlow 依赖库

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    print_function, unicode_literals # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    获取tensorflow的ML范例,加以简单的修改。 basicClass.py # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10)

    来自:帮助中心

    查看更多 →

  • 使用模型

    IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    请确保您使用的OBSModelArts在同一区域。 表1 OBS桶文件夹列表 文件夹名称 用途 “obs://test-modelarts/tensorflow/code/” 用于存储训练脚本文件。 “obs://test-modelarts/tensorflow/data/” 用于存储数据集文件。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano 作为后端运行,导入来自Keras的神经网络模型,可以借此导入Theano、TensorflowCaffe、CNTK等主流学习框架的模型。 语法格式

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano 作为后端运行,导入来自Keras的神经网络模型,可以借此导入Theano、TensorflowCaffe、CNTK等主流学习框架的模型。 语法格式

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 开发用于预置框架训练的代码

    完成参数解析后,用户使用“data_url”、“train_url”代替算法中数据来源和数据输出所需的路径。 在创建训练作业时,填写输入路径和输出路径。 训练输入选择对应的OBS路径或者数据集路径;训练输出选择对应的OBS路径。 训练代码完整示例 训练代码示例中涉及的代码您使用的AI引擎密切相关,以下案例以T

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    华为云EI概览 介绍华为AI的认知EI的由来,并详细介绍华为云EI企业智能 Python编程基础实验 介绍Python编程基础实验相关知识 TensorFlow介绍 介绍TensorFlow的框架,TensorFlow2.0的基础高阶操作,TensorFlow2.0中的Keras高层接口及TensorFlow2

    来自:帮助中心

    查看更多 →

  • 自定义脚本代码示例

    (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 print(x_train.shape) from keras.layers

    来自:帮助中心

    查看更多 →

  • 推理专属预置镜像列表

    推理基础镜像详情PyTorch(CPU/GPU) ModelArts提供了以下PyTorch(CPU/GPU)推理基础镜像: 引擎版本一:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本二:pytorch_1.8.2-cuda_11

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    tensor,格式:[batch,height,width,channels] 数据类型:float32 filter:1个常量tensor,数据类型维度value相同,[filter_height,filter_width,in_channels,out_channels] stride

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    GPU类型的负载,以tensorflow的图像分类为示例,演示在容器中直接使用GPU训练一个简单的神经网络。 优势 使用容器化的方式做此类人工智能训练推理有如下优势: 容器化消除环境差异,不需要自己安装各种软件和配套版本,如python,tensorflow,cuda toolkit等软件。

    来自:帮助中心

    查看更多 →

  • Notebook中使用Conda安装Keras 2.3.1报错

    Notebook中使用Conda安装Keras 2.3.1报错 问题现象 使用Conda安装Keras 2.3.1版本报错。 原因分析 可能是Conda网络不通,请使用pip install命令安装。 解决方法 执行 !pip install keras==2.3.1命令安装Keras。 父主题: 环境配置故障

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了