基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    机器学习实现推理 更多内容
  • 使用llm-compressor工具量化

    当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github

    来自:帮助中心

    查看更多 →

  • 使用llm-compressor工具量化

    当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github

    来自:帮助中心

    查看更多 →

  • 使用llm-compressor工具量化

    当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github

    来自:帮助中心

    查看更多 →

  • 功能介绍

    模型管理 模型训练服务统一的模型管理菜单。集成在线VSCode开发环境,支持对模型进行编辑修改后,生成新模型包。同时支持多模型组合编排生成新模型。支持将模型下载至本地、生成SHA256校验码、上架至NAIE服务官网、发布成在线推理服务,进行在线推理、创建联邦学习实例、删除模型。 模型验证

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    orker可以利用本机网络提供传输效率,缩短训练时间。 Volcano批量调度系统:加速AI计算的利器 Volcano是一款构建于Kubernetes之上的增强型高性能计算任务批量处理系统。作为一个面向高性能计算场景的平台,它弥补了Kubernetes在机器学习、深度学习、HPC

    来自:帮助中心

    查看更多 →

  • 大模型推理场景介绍

    便用户快速了解文本内容。 机器翻译:大语言模型可以处理多种语言之间的翻译任务,实现跨语言交流。 当前Fabric提供以下两种方式进行推理: 用公共推理服务进行推理:Fabric提供基于开源大语言模型(Qwen2、GLM4等)的公共推理服务,用户可以在推理端点查看公共端点,选择自己

    来自:帮助中心

    查看更多 →

  • 方案概述

    后推送健康科普等服务。健康服务包含随访量表、在线问诊、挂号、在线预约检验等互联网医院服务。也支持通过运营看板实时查看健康服务运营状态。医生也可以自定义设置条件,建立自己的患者群体方便运营服务,如血糖>5.8患者人群。 用户H5终端:当医生或医院运营人员配置服务策略后,患者触发了满

    来自:帮助中心

    查看更多 →

  • (停止维护)Kubernetes 1.13版本说明

    com/kubernetes/kubernetes/blob/master/CHANGE LOG /CHANGELOG-1.13.md v1.11到v1.12的变化: https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1

    来自:帮助中心

    查看更多 →

  • ModelArts入门实践

    Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“物体

    来自:帮助中心

    查看更多 →

  • 推理服务测试

    推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测

    来自:帮助中心

    查看更多 →

  • 开通推理服务

    开通推理服务 对于公共推理服务,用户需要先申请开通,开通后才可以使用。开通公共推理服务之后用户会获得一定的免费配额,并在一定的时间内有效,超过将无法使用。如果用户想继续使用,建议部署推理服务使用。 前提条件 已有可正常使用的华为云账号。 已有至少一个正常可用的工作空间。 操作步骤

    来自:帮助中心

    查看更多 →

  • 创建推理服务

    用户可以在模型导航栏下查看公共模型信息,可以使用公共模型部署推理服务,但是不允许删除公共模型。 约束与限制 部署推理服务时的通用约束限制如下: 推理服务资源规格最小值为1,最大值为100 部署推理服务的时候选择的推理端点下的推理服务资源最大值不能超过推理端点的最大资源数。 前提条件 已有可正常使用的华为云账号。

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    clone,确保集群可以访问公网。 Step1 上传权重文件 将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    clone,确保集群可以访问公网。 Step1 上传权重文件 将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。

    来自:帮助中心

    查看更多 →

  • 基本概念

    芯片的技能。 HiLens Kit 华为HiLens开发套件。也可以专门代表集成了华为海思昇腾芯片,高性能推理能力,支持基于深度学习技术,实现图像、视频的分析、推理的智能推理摄像机,帮助用户快速安装、部署多种AI技能。 HiLens Framework 封装基础开发组件,为开发者

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 应用场景

    本节介绍Fabric服务的主要应用场景。 数据工程 高效处理大规模数据,通过并行计算加速数据处理过程,例如数据清洗、转换和聚合。 分布式机器学习 Ray支持分布式训练和调优,可以用于处理大规模数据集和模型,使得模型训练更加高效。 大模型 使用大模型实现智能对话、自动摘要、机器翻译、文本分类、图像生成等任务。

    来自:帮助中心

    查看更多 →

  • (停止维护)Kubernetes 1.13版本说明

    com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.13.md v1.11到v1.12的变化: https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    ore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0.9.0-mindspore2.0.0-cuda11

    来自:帮助中心

    查看更多 →

  • Standard推理部署

    Standard推理部署 ModelArts Standard推理服务访问公网方案 端到端运维ModelArts Standard推理服务方案 使用自定义引擎在ModelArts Standard创建模型 使用大模型在ModelArts Standard创建模型部署在线服务 第三方推理框架迁移到ModelArts

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了