基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    机器学习实现推理 更多内容
  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 鲲鹏AI推理加速型

    310芯片强大的处理能力。 鲲鹏AI推理加速型实例kAi1s基于Atlas 300I加速卡设计,更多详细信息请参考昇腾社区。 鲲鹏AI推理加速型云服务器可用于机器视觉、 语音识别 自然语言处理 通用技术,支撑智能零售、智能园区、机器人云大脑、平安城市等场景。 规格 表2 kAi1s型弹性云服务器的规格 规格名称

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 异步推理

    在“模型仓库”页面单击导入模型包对应的“”,发布推理服务,如图7所示。 图7 发布推理服务 在“发布推理服务”页面配置“计算节点规格”等信息,单击“确定”,如图8所示。 图8 配置推理服务发布信息 单击推理服务菜单栏的“推理服务”,查看模型包推理服务部署进展,如图9所示。 图9 推理服务部署 待推理服务部署完成,左

    来自:帮助中心

    查看更多 →

  • 开发推理

    py”中。当学件模型打包发布成在线推理服务时,可以使用推理代码,完成快速在线推理验证。 单击“测试模型”左下方的“开发推理”。 等待推理代码生成完成后,可在左侧目录树中,看到生成的推理文件“learnware_predict.py”。 用户可以根据实际情况,编辑修改推理文件中的代码。 父主题:

    来自:帮助中心

    查看更多 →

  • 推理部署

    推理部署 模型管理 服务部署 服务预测

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    想选择。 机器学习机器学习中多层神经网络需要大量计算资源,其中训练过程需要处理海量的数据,推理过程则希望极低的时延。同时机器学习算法还在不断优化中, FPGA以其高并行计算、硬件可编程、低功耗、和低时延等优势,可针对不同算法动态编程设计最匹配的硬件电路,满足机器学习中海量计算和

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 发布推理服务

    发布推理服务 模型训练服务支持一键发布在线推理服务。用户基于成熟的模型包,创建推理服务,直接在线调用服务得到推理结果。操作步骤如下。 单击模型包“操作”列的,弹出“发布推理服务”对话框,如图1所示。 图1 推理服务 配置对话框参数如表1所示。 表1 创建推理服务参数配置 参数名称

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现图像分类

    使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 在推理生产环境中部署推理服务

    推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。

    来自:帮助中心

    查看更多 →

  • 在推理生产环境中部署推理服务

    解释请参见部署在线服务。 图3 部署在线服务-专属资源池 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 若以vllm接口启动服务,设置请求路径:“/generate”,输入预测代码“{"prompt":

    来自:帮助中心

    查看更多 →

  • 在推理生产环境中部署推理服务

    部署在线服务。 图6 部署在线服务-专属资源池 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 图7 服务部署完成 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 如果以vllm接口启动服务,设置请求路径:“/generate”,输入预测代码“{"prompt":

    来自:帮助中心

    查看更多 →

  • 概述

    概述 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相

    来自:帮助中心

    查看更多 →

  • GPU加速型

    TOPS 机器学习、深度学习、训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。 支持开启/关闭超线程功能,详细内容请参见开启/关闭超线程。 推理加速型 Pi1 NVIDIA P4(GPU直通) 2560 5.5TFLOPS 单精度浮点计算 机器学习、深度学习、训练推理

    来自:帮助中心

    查看更多 →

  • ModelArts

    Standard创建AI应用部署在线服务 自定义镜像 用于推理部署 从0-1制作自定义镜像并创建AI应用 05 自动学习 ModelArts自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。 自动学习简介 自动学习功能介绍 项目分类 图像分类 物体检测 预测分析 声音分类

    来自:帮助中心

    查看更多 →

  • 基本概念

    始处理请求。 推理单元 推理单元是指计算机系统中的一个模块,用于进行逻辑推理和推断。其主要功能是根据已知的事实和规则,推导出新的结论或答案。 推理单元常常被用于解决问题、推理、诊断、规划等任务。它可以帮助计算机系统自动推理出一些结论,从而实现智能化的决策和行为。推理单元通常包括知

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了