AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习过度训练 更多内容
  • 模型训练

    GP”算法,选取十个超参组合,依次进行模型训练。 图2 超参优化配置 单击“开始训练”,回到代码编辑界面。 可通过单击界面右上角的“训练任务”,查看训练任务状态。如图3所示。 单击训练任务下方的图标,下方会展示模型训练日志、运行结果日志、运行图和Tensorboard窗口。 图3 训练任务 模型训练结束后,单击

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 特征和算法确定后,可以开始训练模型。 训练模型 单击“模型选择”左下方的“训练模型”。 新增“训练模型”内容,如图1所示。 图1 训练模型 单击“训练模型”代码框左侧的图标,进行模型训练。 模型训练完成后,界面下方展示模型的评估效果。 第一列内容的含义如下所示: 0:标注为0的所有样本。可以理解为标签。

    来自:帮助中心

    查看更多 →

  • 模型训练

    单击“开始训练”,训练任务开始。 单击“关闭”,返回联邦学习工程详情界面,“模型训练任务”下方展示新建的训练任务,“训练状态”列展示任务的状态。 ALL显示所有训练任务。 WAITING表示训练任务准备中。 RUNNING表示正在训练。 FINISHED表示训练成功。 FAILED表示训练失败。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务

    来自:帮助中心

    查看更多 →

  • 训练模组

    True 鉴权字段,内容格式为: Bearer +tokenByAKSK接口的返回值中AccessToken(Bearer后有空格) 4 x-UserId string False 操作员标识 可在登录后,进入员工管理页面,查看接口返回的userId 响应说明 响应状态码: 200 表2

    来自:帮助中心

    查看更多 →

  • 训练算法

    训练算法 添加自定义算法 添加自定义算法流程为“初始化训练算法 > 选择训练算法文件 > 上传训练算法文件”。具体操作步骤如下: 在左侧菜单栏中单击“训练服务 > 算法管理”。 单击“新建训练算法”,填写算法基本信息。 图1 新建训练算法 名称:包含中英文、数字、“_”“-”,不得超过64个字符。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 自动学习训练作业失败 父主题: 自动学习

    来自:帮助中心

    查看更多 →

  • Controlnet训练

    /home/ma-user/datasets/fill50k unzip conditioning_images.zip unzip images.zip 接着修改fill50k.py文件,如果机器无法访问huggingface网站,则需要将脚本文件中下载地址替换为容器本地目录。

    来自:帮助中心

    查看更多 →

  • 预训练

    wen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • 预训练

    SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定

    来自:帮助中心

    查看更多 →

  • 预训练

    68长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。

    来自:帮助中心

    查看更多 →

  • 预训练

    SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定

    来自:帮助中心

    查看更多 →

  • 预训练

    wen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • 预训练

    改tokenizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入:

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0.9.0-mindspore2.0.0-cuda11.6-ubuntu20

    来自:帮助中心

    查看更多 →

  • WAF.service

    waf-app: type: HuaweiCloud.WAF.service properties: wafServicePackage: cloudServiceType: hws.service.type.waf resourceType:

    来自:帮助中心

    查看更多 →

  • 增量模型训练

    增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的

    来自:帮助中心

    查看更多 →

  • 创建一个问答机器人

    查看问答机器人 购买的机器人,会显示在您对话机器服务控制台中,智能问答机器人的列表里。在问答机器人列表右上角,您可以选择机器人状态筛选您购买的机器人,或者输入名称关键字,单击进行查找。对于包年包月的机器人,可以进行机器人管理、续费、规格修改。 机器人管理:进入机器人配置界面,

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期 无需AI技能,支持模型自动生成,业务人员快速使用

    来自:帮助中心

    查看更多 →

  • Finetune训练

    Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了