AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习过度训练 更多内容
  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • ModelArts

    如何查看ModelArts消费详情? 更多 自动学习 自动学习生成的模型,存储在哪里?支持哪些其他操作? 在ModelArts中图像分类和物体检测具体是什么? 自动学习训练后的模型是否可以下载? 自动学习项目中,如何进行增量训练? 更多 训练作业 ModelArts中的作业为什么一直处于等待中?

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人版本 智能问答机器人支持基础版、高级版、专业版、旗舰版四种规格,各规格的差异如表1所示。 表1 机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    时费力,而且需要很多的知识积累。 图1 模型训练环节 Kubeflow诞生于2017年,Kubeflow项目是基于容器和Kubernetes构建,旨在为数据科学家、机器学习工程师、系统运维人员提供面向机器学习业务的敏捷部署、开发、训练、发布和管理平台。它利用了云原生技术的优势,让

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在智能问答机器人列表中,选择“操作”列的“规格修改”。 图1 规格修改 依据使用需求修改机器人的规格。 图2 修改问答机器人规格 父主题: 智能问答机器

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    2.0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 安全服务

    安全服务 本章节主要介绍Anti-DDoS流量清洗、 Web应用防火墙 和云 堡垒机 的概念,让您更好的了解这些安全服务。 Anti-DDoS流量清洗 Anti-DDoS流量清洗(Anti-DDoS Service)是通过专业的防DDoS设备来为客户互联网应用提供精细化的抵御DDoS攻击能力(包括CC、SYN

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 产品功能

    护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。

    来自:帮助中心

    查看更多 →

  • 使用流程

    评测镜像 Octopus平台各服务均提供用户 自定义镜像 功能,此模块对镜像提供了统一管理。 仿真镜像 仿真场景 仿真场景模块支持对单个仿真场景的增删改查操作。用户可根据场景类型,依据平台提示,上传符合要求的场景文件。场景创建完毕后,用户可选择在线仿真机器加载场景,通过仿真器内置算法检验场景质量。

    来自:帮助中心

    查看更多 →

  • 什么是对话机器人服务

    什么是对话机器服务 对话机器服务(Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发的云服务,主要提供智能问答机器人功能。智能问答机器人旨在帮助企业快速构建,发布和管理基于知识库的智能问答机器人系统。 对话机器服务包含以下子服务:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了