AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。De

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    率。 算法运行机制 选择一段真人视频。 输入真人视频,经过平台专家安全审核通过,且用户授权使用后,由训练人员选取真人视频中符合要求的视频进行预处理。预处理完成后,进行深度学习训练,生成该真人形象的数字人驱动模型。 推理阶段输入一段音频。 音频输入至数字人驱动模型后,经过模型推理生成数字人形象播报视频。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;模型精度较轻量级提升约20%

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • 在ModelArts上如何提升训练效率并减少与OBS的交互?

    在ModelArts上如何提升训练效率并减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与对象存

    来自:帮助中心

    查看更多 →

  • 精度调优前准备工作

    DP:数据并行(Data Parallelism)是大规模深度学习训练中常用的并行模式,它会在每个进程(设备)或模型并行组中维护完整的模型和参数,但在每个进程上或模型并行组中处理不同的数据。因此,数据并行非常适合大数据量的训练任务。 TP:张量并行也叫层内并行,通过将网络中的权重切

    来自:帮助中心

    查看更多 →

  • 超过最大递归深度导致训练作业失败

    超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。 处理方法

    来自:帮助中心

    查看更多 →

  • 自动学习训练作业失败

    自动学习训练作业失败 自动学习训练作业创建失败,一般是因为后台服务故障导致的,建议稍等片刻,然后重新创建训练作业。如果重试超过3次仍无法解决,请联系华为云技术支持。 自动学习训练作业创建成功,但是在运行过程中,由于一些故障导致作业运行失败,排查方式如下: 首次出现请检查您的账户是

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • GPU加速型

    TOPS 机器学习深度学习、训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。 支持开启/关闭超线程功能,详细内容请参见开启/关闭超线程。 推理加速型 Pi1 NVIDIA P4(GPU直通) 2560 5.5TFLOPS 单精度浮点计算 机器学习深度学习、训练推理、科

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 执行作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业 在弹出的界面配置执行参数,配置执行参数可选择常规配置与自定义配置。填写完作业参数,单击“确定”即可开始训练作业。 常规配置:通过界面点选

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了