金融风控机器学习 更多内容
  • 风控引擎

    图80 风险案件库 系统管理-产品管理 接入全景式业务系统的前提是需要先创建产品, 系统会分配 appId和appSecret. 这两个参数标识一个应用, 也贯穿整个体系, 包括事件, 字段, 指标, 策略等, 就算是调用任何一个接口都需要对appId和appSecret进行鉴权。

    来自:帮助中心

    查看更多 →

  • 应用场景

    在海量知识中快速关联查询秒级响应,搜索结果更准确。 知识梳理 通过图上分析计算,合并相似本体,进行知识消岐。 学习路径的识别及推荐 通过知识点的先修关系,识别学习路径,针对薄弱知识点进行学习路径推荐。 金融应用 面对层出不穷、复杂多样的个人和群体行为,帮助客户挖掘出潜在的风险,为客户保驾护航。 该场景能帮助您实现以下功能。

    来自:帮助中心

    查看更多 →

  • 方案概述

    基于顶象能力搭建全行级的反欺诈中台,服务于客户全部业务线,能够结合具体业务需求配置针对金融业务领域的策略。 客户价值: 全面实现全渠道、跨产品、各种关联方式的欺诈风险的实时防。为行方构建了有效的全行级反欺诈体系,获得亚洲银行家大奖。 电商公司反营销作弊智能系统 业务痛点:

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 政企信用联合 金融机构对于中小微企业的信用数据通常不足,央行征信数据覆盖率有限,不良企业多家骗贷事件屡有发生。金融机构与政府部门,如税务部门、市场监管部门、水电公司等在保护各方原始数据隐私的前提下,通过多方联合建模,金融机构补充了模型特征维度,提升模型准确率。 优势:

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    想选择。 机器学习机器学习中多层神经网络需要大量计算资源,其中训练过程需要处理海量的数据,推理过程则希望极低的时延。同时机器学习算法还在不断优化中, FPGA以其高并行计算、硬件可编程、低功耗、和低时延等优势,可针对不同算法动态编程设计最匹配的硬件电路,满足机器学习中海量计算和

    来自:帮助中心

    查看更多 →

  • 单点环路检测(Single Vertex Circles Detection)

    Detection)是一个经典的图问题,意在寻找图中的环路。环路上的点较好地体现了该点的重要性。 适用场景 单点环路检测适用于交通运输、金融等场景。 参数说明 表1 Single-Vertex-Circles-Detection算法参数说明 参数 是否必选 说明 类型 取值范围

    来自:帮助中心

    查看更多 →

  • 中介中心度算法(Betweenness Centrality)

    中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融、交通路网、城市规划等领域 参数说明 表1 Betweenness Centrality算法参数说明

    来自:帮助中心

    查看更多 →

  • k核算法(k-core)

    点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融等场景。 参数说明 表1 k核算法(k-core)参数说明 参数 是否必选 说明 类型 取值范围 默认值 k 是 核数。 算法会返回核数大于等于k的节点。

    来自:帮助中心

    查看更多 →

  • 方案概述

    痛点三:企业的合作伙伴信息不透明,需要深入了解其经营状况和商业风险。合作伙伴选择需要综合考虑多个因素。 通过本方案实现的业务效果: 金融-信贷业务/(国有银行/商业银行/金融服务/财产保险/人寿保险) 降低合规监管风险:多维度数据整合、实时风险评估,提供全面的信用分析。前对企业评估风险,防范骗

    来自:帮助中心

    查看更多 →

  • 典型应用

    成推荐。 优势: 超强写入:相比于其他NoSQL服务,拥有超强写入性能。 大数据分析:结合Spark等工具,可以用于实时推荐等大数据场景。 金融行业 云数据库 GeminiDB结合Spark等大数据分析工具,可应用于金融行业的体系,构建反欺诈系统。 优势: 大数据分析:结合S

    来自:帮助中心

    查看更多 →

  • 带一般过滤条件环路检测(filtered circle detection)

    detection)目的是寻找图中所有满足过滤条件的环路。 适用场景 带一般过滤条件的环路检测(filtered circle detection)算法适用于金融中循环转账检测、反洗钱,网络路由中异常链接检测,企业担保圈贷款风险识别等场景。 参数说明 表1 filtered circle detection参数说明

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    EdgeFabric)服务部署,IEF通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管、数据处理、分析决策、智能化的诉求。同时,在云端提供统一的设备/应用监控、日志采集等运维能力,为企业提供完整的边缘和云协同的一体化服务的边缘计算解决方案。

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 算法一览表

    点集最短路算法用于发现两个点集之间的所有最短路径,可应用于互联网社交、金融、路网交通、物流配送等场景下的区块之间关系的分析。 带一般过滤条件环路检测(Filtered Circle Detection) 目的是寻找图中所有满足过滤条件的环路。适用于金融中循环转账检测、反洗钱,网络路由中异常链接检测,企业担保圈贷款风险识别等场景。

    来自:帮助中心

    查看更多 →

  • 金融行业

    中国金融业信息技术“十三五”发展规划(2017)指出:支持实力较强的机构独立或者联合建设金融业云服务平台,面向同业特别是中小金融机构提供云服务,提高行业资源使用效率。多家银行系金融科技公司成立,以行业云方式,对信息建设、业务流程、金融应用软件开发等能力做输出。服务从集团内部到中小银行、基金、保险、证券、信托等金融机构,再到其他非金融企业。

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 本节介绍ModelArts服务的主要应用场景。 大模型 支持三方开源大模型,实现智能回答、聊天机器人、自动摘要、机器翻译、文本分类等任务。 AIGC 提供AIGC场景化解决方案,辅助创作文案、图像、音视频等数字内容。 自动驾驶 实现车辆自主感知环境、规划路径和控制行驶。

    来自:帮助中心

    查看更多 →

  • 点集全最短路(All Shortest Paths of Vertex Sets)

    点集全最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的所有最短路径。 适用场景 点集最短路算法可应用于互联网社交、金融、路网交通、物流配送等场景下的区块之间关系的分析。 参数说明 表1 All Shortest Paths of Vertex Sets参数说明

    来自:帮助中心

    查看更多 →

  • OD中介中心度(OD-betweenness Centrality)

    个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、等网络中“中间人”发掘,交通、传输等网络中关键节点识别,城市热点事件\早晚高峰人群车辆迁徙发生时关键路段的模拟;适用于社交、金融、交通路网、城市规划等领域 参数说明 表1 OD-betweenness

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了