tensorflow 反卷积 更多内容
  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    filter_w * 2; 如果ALIGN(filter_c,16)%32 = 0,a = a/2 conv_input_width=(卷积输入w - 1) * strideW + 1 b = (conv_input_width) * filter_h * ALIGN(filter_num,16)

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    使用Tensorflow训练神经网络 应用场景 当前主流的大数据、AI训练和推理等应用(如TensorflowCaffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器

    来自:帮助中心

    查看更多 →

  • 高性能调度

    的亲和性和亲和性配置是否冲突或吻合,并不会考虑接下来可能会调度的Pod造成的影响。 Volcano提供的Task-topology算法是一种根据Job内task之间亲和性和亲和性配置计算task优先级和Node优先级的算法。通过在Job内配置task之间的亲和性和亲和性策略

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容:

    来自:帮助中心

    查看更多 →

  • 亲和与反亲和调度

    亲和与亲和调度 在守护进程集(DaemonSet)中讲到使用nodeSelector选择Pod要部署的节点,其实Kubernetes还支持更精细、更灵活的调度机制,那就是亲和(affinity)与亲和(anti-affinity)调度。 Kubernetes支持节点和Pod两

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

  • 调度策略(亲和与反亲和)

    调度策略(亲和与亲和) 创建工作负载时可以使用nodeSelector选择Pod要部署的节点,其实Kubernetes还支持更精细、更灵活的调度机制,那就是亲和(affinity)与亲和(anti-affinity)调度。 Kubernetes支持节点和Pod两个层级的亲和与亲和。通

    来自:帮助中心

    查看更多 →

  • 配置IPD独立软件类项目自动化卷积规则

    配置IPD独立软件类项目自动化卷积规则 项目创建者或有自动化配置权限的角色可根据自身需要启用或停用自动化规则,实现父子状态自动卷积流转或状态自动流转功能。规则一旦启用,该项目中所有工作项,所有用户均可触发规则执行。 前提条件 已新建IPD独立软件类项目,并在项目中拥有“自动化”权限。

    来自:帮助中心

    查看更多 →

  • 配置IPD系统设备类项目工作项的状态卷积自动化规则

    配置IPD系统设备类项目工作项的状态卷积自动化规则 项目创建者或有自动化配置权限的角色可根据自身需要启用或停用自动化规则,实现父子状态自动卷积流转或状态自动流转功能。规则一旦启用,该项目中所有工作项,所有用户均可触发规则执行。 前提条件 已新建IPD系统设备类项目,并在项目中拥有“自动化”权限。

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    "cpu_image_url" : "aip/tensorflow_2_1:train", "gpu_image_url" : "aip/tensorflow_2_1:train", "image_version" : "tensorflow_2.1.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 配置调度策略(亲和与反亲和)

    配置调度策略(亲和与亲和) Kubernetes支持节点和Pod两个层级的亲和(affinity)与亲和(anti-affinity)调度。通过配置亲和与亲和规则,可以允许您指定硬性限制或者偏好,例如将前台Pod和后台Pod部署在一起、某类应用部署到某些特定的节点、不同应用部署到不同的节点等等。

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果使用其他引擎,请将命令中“TensorFlow-1.8”替换为其他引擎的名称及其版本号。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip

    来自:帮助中心

    查看更多 →

  • Tensorflow多节点作业下载数据到/cache显示No space left

    Tensorflow多节点作业下载数据到/cache显示No space left 问题现象 创建训练作业,Tensorflow多节点作业下载数据到/cache显示:“No space left”。 原因分析 TensorFlow多节点任务会启动parameter server(

    来自:帮助中心

    查看更多 →

  • 华为HiLens上可以运行哪些TensorFlow和Caffe的模型?

    华为HiLens上可以运行哪些TensorFlowCaffe的模型? 准确地说,华为HiLens上只能运行“om”模型,华为HiLens管理控制台的“模型导入(转换)”功能支持将部分TensorFlow/Caffe模型转换成“om”模型。 当前可支持的TensorFlow/Caffe算子范围请参

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库?

    序包等多种环境,包括TensorFlow、MindSpore、PyTorchSpark等。您也可以使用pip install在Notobook或Terminal中安装外部库。 在Notebook中安装 例如,通过JupyterLab在“TensorFlow-1.8”的环境中安装Shapely。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了