tensorflow 卷积操作 更多内容
  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    Tensorflow算子边界 “.om”模型支持的Tensorflow算子边界如表1所示。 表1 TensorFlow算子边界 序号 Python API C++ API 边界 1 tf.nn.avg_pool AvgPool Type:Mean 【参数】 value:4-D t

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    使用Tensorflow训练神经网络 应用场景 当前主流的大数据、AI训练和推理等应用(如TensorflowCaffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器

    来自:帮助中心

    查看更多 →

  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容:

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • 配置IPD独立软件类项目自动化卷积规则

    统自动卷积状态为“完成”。 父项所有子工作项满足规则条件中的配置,且父项的目标状态是状态与流转中支持流转的状态时,规则执行成功。 父项有其他子工作项不满足规则条件中的配置时,规则被触发,生成一条未执行操作的记录,父项状态不流转。 无父工作项时,规则被触发,生成一条未执行操作的记录,父项状态不流转。

    来自:帮助中心

    查看更多 →

  • 配置IPD系统设备类项目工作项的状态卷积自动化规则

    统自动卷积状态为“完成”。 父项所有子工作项满足规则条件中的配置,且父项的目标状态是状态与流转中支持流转的状态时,规则执行成功。 父项有其他子工作项不满足规则条件中的配置时,规则被触发,生成一条未执行操作的记录,父项状态不流转。 无父工作项时,规则被触发,生成一条未执行操作的记录,父项状态不流转。

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持哪些模型?

    并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 如果模型不符合“.om”模型支持的TensorFlowCaffe算子边界,请选择符合要求的模型。 父主题:

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url) x_train, x_test = x_train / 255.0, x_test / 255.0

    来自:帮助中心

    查看更多 →

  • TensorFlow-1.8作业连接OBS时反复出现提示错误

    屏蔽INFO级别的日志信息。具体操作如下: import os os.environ['TF_CPP_MIN_ LOG _LEVEL'] = '2' import tensorflow as tf import moxing.tensorflow as mox “TF_CPP_M

    来自:帮助中心

    查看更多 →

  • 配置Scrum项目工作项的状态卷积自动化规则

    作项详情页的操作历史页面会新增一条自动化规则操作历史。 执行3,单击“Story完成后关闭父项”右侧的(是否启用),停用已配置的规则。 执行7,重新进入工作项列表。 该Feature类型的工作项状态不会自动更新。 该工作项详情页的操作历史页面不会新增自动规则相关的操作历史。 父主题:

    来自:帮助中心

    查看更多 →

  • 操作

    操作 支持对项目的操作有: 编辑项目,可以编辑项目的基本信息; 项目报告,可以查看报告详情页面,并且支持一键生成验收文档 归档发布资产,支持将项目中的信息架构发布到解决方案加速场。发布成功后可以在加速场架构模板的信息架构里查看。 图1 项目管理 编辑项目 项目报告 归档发布资产 父主题:

    来自:帮助中心

    查看更多 →

  • 在Notebook中添加自定义IPython Kernel

    使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda env。 在No

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    "cpu_image_url" : "aip/tensorflow_2_1:train", "gpu_image_url" : "aip/tensorflow_2_1:train", "image_version" : "tensorflow_2.1.0-cuda_10

    来自:帮助中心

    查看更多 →

  • Tensorflow多节点作业下载数据到/cache显示No space left

    Tensorflow多节点作业下载数据到/cache显示No space left 问题现象 创建训练作业,Tensorflow多节点作业下载数据到/cache显示:“No space left”。 原因分析 TensorFlow多节点任务会启动parameter server(

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1 GPU 是 是 conda3-ubuntu18

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了