GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    tensorflow 多gpu并行 更多内容
  • 验证并行查询效果

    验证并行查询效果 本章节使用TPCH测试工具测试并行查询对22条QUERY的性能提升情况。 测试的实例信息如下: 实例规格:32 vCPUs | 256 GB 内核版本:2.0.26.1 并行线程数:16 测试数据量:100GB 操作步骤 生成测试数据。 请在https://github

    来自:帮助中心

    查看更多 →

  • 在推理生产环境中部署推理服务

    "ray"或者"mp",其中"ray"表示使用ray进行启动卡推理,"mp"表示使用python多进程进行启动卡推理。默认使用"mp"后端启动卡推理。 推理启动脚本必须名为run_vllm.sh,不可修改其他名称。 hostname和port也必须分别是0.0.0.0和8080不可更改。

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性 云服务器 GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |

    来自:帮助中心

    查看更多 →

  • GPU视图

    计算公式:节点上容器显存使用总量/节点上显存总量 GPU卡-显存使用量 字节 显卡上容器显存使用总量 GPU卡-算力使用率 百分比 每张GPU卡的算力使用率 计算公式:显卡上容器算力使用总量/显卡的算力总量 GPU卡-温度 摄氏度 每张GPU卡的温度 GPU-显存频率 赫兹 每张GPU卡的显存频率 GPU卡-PCle带宽

    来自:帮助中心

    查看更多 →

  • 准备GPU资源

    03版本的GPU驱动。 容器运行时 containerd 插件 集群中需要同时安装以下插件: volcano插件:1.10.1及以上版本 gpu-device-plugin插件:2.0.0及以上版本 步骤一:纳管并标记GPU节点 如果您的集群中已有符合基础规划的GPU节点,您可以跳过此步骤。

    来自:帮助中心

    查看更多 →

  • 监控GPU资源

    监控GPU资源 本章介绍如何在U CS 控制台界面查看GPU资源的全局监控指标。 前提条件 完成GPU资源准备。 当前本地集群已创建GPU资源。 当前本地集群开启了监控能力。 GPU监控 登录UCS控制台,在左侧导航栏选择“容器智能分析”。 选择对应的集群并开启监控,详细操作请参照集群开启监控。

    来自:帮助中心

    查看更多 →

  • 创建GPU应用

    com/gpu 指定申请GPU的数量,支持申请设置为小于1的数量,比如 nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 指定nvidia.com/gpu后,在调度时不会将负载调

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    Open-Clip基于DevServer适配PyTorch NPU训练指导 Open-Clip模型训练 介绍Open-Clip模型基于ModelArts DevServer的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。 应用于AIGC和模态视频编码器。 数字人场景 样例 场景

    来自:帮助中心

    查看更多 →

  • 数据并行导入导出

    数据并行导入导出 GaussDB 提供了并行导入导出功能,以快速、高效地完成大量数据导入导出。介绍GaussDB并行导入导出的相关参数。 raise_errors_if_no_files 参数说明:设置导入时是否区分“导入文件记录数为空”和“导入文件不存在”。该参数开启时,“导入文

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    /checkpoints/gpt2 图6 模型checkpoint 步骤3 单机卡训练 和单机单卡训练相比, 单机卡训练只需在预训练脚本中设置卡参数相关即可, 其余步骤与单机单卡相同。 当前选择GPU裸金属 服务器 是8卡, 因此需要在预训练脚本中调整如下参数: GPUS_PER_NODE=8

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    ,集群有4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    gputil import GPUtil as GPU GPU.showUtilization() import GPUtil as GPU GPUs = GPU.getGPUs() for gpu in GPUs: print("GPU RAM Free: {0:.0f}MB |

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 设置Spark Core并行度

    在代码中配置“spark.default.parallelism”设置并行度,优先级次之。 val conf = new SparkConf() conf.set("spark.default.parallelism", 24) 在“$SPARK_HOME/conf/spark-defaults

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 机或卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容:

    来自:帮助中心

    查看更多 →

  • 查询作业引擎规格

    engines结构数组 引擎规格参数列表,如表4所示。 表4 engines属性列表说明 参数 参数类型 说明 engine_type integer 训练作业的引擎类型。 1:TensorFlow。 2:MXNet。 4:Caffe。 5:Spark_MLlib 6: Scikit Learn

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。 表1 新旧版预置引擎差异 工作环境 预置训练I引擎与版本

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • 设置并行度

    在代码中配置“spark.default.parallelism”设置并行度,优先级次之。 val conf = new SparkConf() conf.set("spark.default.parallelism", 24) 在“$SPARK_HOME/conf/spark-defaults

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了