GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    tensorflow 多gpu训练 更多内容
  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    使用Tensorflow训练神经网络 应用场景 当前主流的大数据、AI训练和推理等应用(如TensorflowCaffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    ,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1 GPU 是 是 conda3-ubuntu18.04

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    ,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1 GPU 是 是 conda3-ubuntu18.04

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    "cpu_image_url" : "aip/tensorflow_2_1:train", "gpu_image_url" : "aip/tensorflow_2_1:train", "image_version" : "tensorflow_2.1.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    从0制作 自定义镜像 用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎Tensorflow训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    案例参考: 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU多机多卡训练任务

    RT main.py --data-path $IMAGE_DATA_PATH --cfg ./configs/swin/swin_base_patch4_window7_224_22k.yaml 推荐先使用单机单卡运行脚本,待正常运行后再改用卡运行脚本。 卡run.

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    制作自定义镜像用于训练模型 训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    官网。 TensorBoard可视化训练作业,当前仅支持基于TensorFlowPyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持卡环境下的模型分布式训练,大幅度提升模型训练的速度,满足海量样本数据加速训练的需求。 图17

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    训练作业找不到GPU 问题现象 训练作业运行出现如下报错: failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 原因分析 根据错误信息判断,报错原因为训练作业运行程序读取不到GPU。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    ,生成新模型包。同时支持模型组合编排生成新模型。支持将模型下载至本地、生成SHA256校验码、上架至NAIE服务官网、发布成在线推理服务,进行在线推理、创建联邦学习实例、删除模型。 模型验证 模型验证是基于新的数据集或超参,对模型训练服务已打包的模型进行验证,根据验证报告判断当前模型的优劣。

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    DevServer的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。 应用于AIGC和模态视频编码器。 数字人场景 样例 场景 说明 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 预置框架启动文件的启动流程说明

    "tcp://<ip>:<port>" 参数。 卡场景下平台会为启动文件额外拼接 --init_method "tcp://<ip>:<port>" --rank <rank_id> --world_size <node_num>参数。 启动文件需要解析上述参数。 PyTorch-GPU框架的代码示例,请

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    意识别训练代码中是否有“/home/work”的硬编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。

    来自:帮助中心

    查看更多 →

  • 创建AI应用不同方式的场景介绍

    创建AI应用的几种场景 从训练作业中导入AI应用文件创建模型:在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型创建为AI应用,用于部署服务。 从OBS中导入AI应用文件创建模型:如果您使用常用框架在本地完成模型开发和训练,可以将本地的模型按照模型包规

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU单机多卡训练任务

    在ModelArts Standard上运行GPU单机训练任务 操作流程 准备工作: 购买服务资源(VPC、SFS、SWR和E CS ) 配置权限 创建专属资源池(打通VPC) 在ECS 服务器 挂载SFS Turbo存储 在ECS中设置ModelArts用户可读权限 安装和配置OBS命令行工具

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    restartPolicy: OnFailure 提交作业,开始训练。 kubectl apply -f mnist.yaml 等待训练作业完成,通过Kubeflow的UI可以查询训练结果信息。至此就完成了一次简单的分布式训练任务。Kubeflow的借助TFJob简化了作

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了