tensorflow cpu 并行 更多内容
  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    支持基于TensorFlowPyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。 TensorFlow引擎的训练脚

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    "cpu_image_url" : "aip/tensorflow_2_1:train", "gpu_image_url" : "aip/tensorflow_2_1:train", "image_version" : "tensorflow_2.1

    来自:帮助中心

    查看更多 →

  • 并行导入

    并行导入 GaussDB (DWS)提供了并行导入功能,以快速、高效地完成大量数据导入。介绍GaussDB(DWS)并行导入的相关参数。 raise_errors_if_no_files 参数说明:导入时是否区分“导入文件记录数为空”和“导入文件不存在”。raise_errors_

    来自:帮助中心

    查看更多 →

  • 并行DDL

    并行DDL 传统的DDL操作基于单核和传统硬盘设计,导致针对大表的DDL操作耗时较久,延迟过高。以创建二级索引为例,过高延迟的DDL操作会阻塞后续依赖新索引的DML查询操作。 云数据库 TaurusDB支持并行DDL的功能。当数据库硬件资源空闲时,您可以通过并行DDL功能加速DD

    来自:帮助中心

    查看更多 →

  • 并行导入

    并行导入 GaussDB提供了并行导入功能,以快速、高效地完成大量数据导入。介绍GaussDB并行导入的相关参数。 raise_errors_if_no_files 参数说明:导入时是否区分“导入文件记录数为空”和“导入文件不存在”。raise_errors_if_no_file

    来自:帮助中心

    查看更多 →

  • 并行导入

    并行导入 GaussDB提供了并行导入功能,以快速、高效地完成大量数据导入。介绍GaussDB并行导入的相关参数。 raise_errors_if_no_files 参数说明:导入时是否区分“导入文件记录数为空”和“导入文件不存在”。raise_errors_if_no_file

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    Tensorflow算子边界 “.om”模型支持的Tensorflow算子边界如表1所示。 表1 TensorFlow算子边界 序号 Python API C++ API 边界 1 tf.nn.avg_pool AvgPool Type:Mean 【参数】 value:4-D t

    来自:帮助中心

    查看更多 →

  • CPU调度

    CPU调度 CPU管理策略 增强型CPU管理策略 父主题: 调度

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如表1 Host CPU报表主要内容所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始snapshot的Load

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如表1所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1.8 CPU/GPU 是 是 mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04 CPU and

    来自:帮助中心

    查看更多 →

  • CPU检查

    判断cpu核数是否满足IEF要求。edgectl check cpu无检查CPU:示例执行结果:

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • 并行导入

    并行导入 GaussDB(DWS)提供了并行导入功能,以快速、高效地完成大量数据导入。介绍GaussDB(DWS)并行导入的相关参数。 raise_errors_if_no_files 参数说明:导入时是否区分“导入文件记录数为空”和“导入文件不存在”。raise_errors_

    来自:帮助中心

    查看更多 →

  • 并行DDL

    并行DDL 传统的DDL操作基于单核和传统硬盘设计,导致针对大表的DDL操作耗时较久,延迟过高。以创建二级索引为例,过高延迟的DDL操作会阻塞后续依赖新索引的DML查询操作。 云数据库 TaurusDB支持并行DDL的功能。当数据库硬件资源空闲时,您可以通过并行DDL功能加速DD

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1.8 CPU/GPU 是 是 mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04 CPU and

    来自:帮助中心

    查看更多 →

  • Argo作业

    选择队列,如果还未创建队列,可单击“创建队列”创建,具体操作请参见队列管理。 任务组件 可将“AI任务”或“HPC任务”用鼠标拖动至画布中。 在画布中,双击“AI任务”或“HPC任务”,编辑任务,编辑完成后,单击“确定”。 编辑AI任务 表2 编辑AI任务 参数 说明 基本信息 任务名称 输入任务名称。 队列 选

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了