tensorflow cpu 并行 更多内容
  • Host CPU

    Host CPU Host CPU列名称及描述如下表所示。 表1 Host CPU报表主要内容 列名称 描述 Cpus CPU数量。 Cores CPU核数。 Sockets CPU Sockets数量。 Load Average Begin 开始Snapshot的Load Average值。

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1.8 CPU/GPU 是 是 mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04 CPU and

    来自:帮助中心

    查看更多 →

  • Argo作业

    选择队列,如果还未创建队列,可单击“创建队列”创建,具体操作请参见队列管理。 任务组件 可将“AI任务”或“HPC任务”用鼠标拖动至画布中。 在画布中,双击“AI任务”或“HPC任务”,编辑任务,编辑完成后,单击“确定”。 编辑AI任务 表2 编辑AI任务 参数 说明 基本信息 任务名称 输入任务名称。 队列 选

    来自:帮助中心

    查看更多 →

  • 并行仿真

    并行仿真 Octopus平台的并行仿真模块分为任务配置和仿真任务两部分。用户在任务配置模块,可使用自研仿真算法,根据Octopus自研仿真评测体系,从行车安全、驾驶行为、乘员舒适性等多维度测评在多种条件下的仿真场景中控制算法控制质量。在仿真任务模块,可将仿真任务运行中关键指标变化绘制成图表,直观形象。

    来自:帮助中心

    查看更多 →

  • CPU管控

    CPU管控 GS_263200040 错误码: Cgroup failed to attach (tid %d) into "%s" group: %s(%d). 解决方案:请确认控制组%s的路径是否已被更改或删除了。 level: WARNING 父主题: WLM

    来自:帮助中心

    查看更多 →

  • 并行查询简介

    并行查询简介 什么是并行查询 云数据库 TaurusDB支持了并行执行的查询方式,用以降低分析型查询场景的处理时间,满足企业级应用对查询低时延的要求。并行查询的基本实现原理是将查询任务进行切分并分发到多个CPU核上进行计算,充分利用CPU的多核计算资源来缩短查询时间。并行查询的性

    来自:帮助中心

    查看更多 →

  • 并行查询(PQ)

    并行查询(PQ) 并行查询简介 注意事项 开启并行查询 验证并行查询效果 父主题: 常见内核功能

    来自:帮助中心

    查看更多 →

  • 并行处理

    分支名”获取该分支的执行结果。 失败时停止 并行处理出现错误时的是否停止。 True:表示任一并行处理的分支出现错误时,整个任务便停止,并返回错误信息。 False:表示并行处理的分支出现错误后,整个任务会继续执行后续节点。 超时时间(ms) 并行处理过程的最长执行时间,如果超过该时间

    来自:帮助中心

    查看更多 →

  • 并行处理

    分支名”获取该分支的执行结果。 失败时停止 并行处理出现错误时的是否停止。 True:表示任一并行处理的分支出现错误时,整个任务便停止,并返回错误信息。 False:表示并行处理的分支出现错误后,整个任务会继续执行后续节点。 超时时间(ms) 并行处理过程的最长执行时间,如果超过该时间

    来自:帮助中心

    查看更多 →

  • 并行查询简介

    并行查询简介 什么是并行查询 云数据库 TaurusDB支持了并行执行的查询方式,用以降低分析型查询场景的处理时间,满足企业级应用对查询低时延的要求。并行查询的基本实现原理是将查询任务进行切分并分发到多个CPU核上进行计算,充分利用CPU的多核计算资源来缩短查询时间。并行查询的性

    来自:帮助中心

    查看更多 →

  • 开启并行查询

    Global 并行执行的最大活跃线程个数。当并行执行的活跃线程超过该值时,新的查询将不允许启用并行执行。 取值范围:0-4294967295 默认值:64 parallel_default_dop Global, Session 并行执行的默认并行度。当查询语句没有指定并行度时,使用该值。

    来自:帮助中心

    查看更多 →

  • 推理专属预置镜像列表

    推理基础镜像详情PyTorchCPU/GPU) ModelArts提供了以下PyTorchCPU/GPU)推理基础镜像: 引擎版本一:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本二:pytorch_1.8.2-cuda_11

    来自:帮助中心

    查看更多 →

  • CPU管理策略

    致(避免业务容器未继承init container的CPU分配结果,导致CPU manager多预留一部分CPU)。更多信息请参见App Containers can't inherit Init Containers CPUs - CPU Manager Static Policy。

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    所示。 表1 ModelArts训练基础镜像列表 引擎类型 版本名称 PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 TensorFlow tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18

    来自:帮助中心

    查看更多 →

  • 开启并行查询

    Global 并行执行的最大活跃线程个数。当并行执行的活跃线程超过该值时,新的查询将不允许启用并行执行。 取值范围:0-4294967295 默认值:64 parallel_default_dop Global, Session 并行执行的默认并行度。当查询语句没有指定并行度时,使用该值。

    来自:帮助中心

    查看更多 →

  • 并行查询(PQ)

    并行查询(PQ) 并行查询简介 注意事项 开启并行查询 验证并行查询效果 父主题: 常见内核功能

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • SESSION_CPU_RUNTIME

    而改变。 min_cpu_time bigint 语句在数据库节点上的最小CPU时间,单位为ms。 max_cpu_time bigint 语句在数据库节点上的最大CPU时间,单位为ms。 total_cpu_time bigint 语句在数据库节点上的CPU总时间,单位为ms。

    来自:帮助中心

    查看更多 →

  • SESSION_CPU_RUNTIME

    语句执行的开始时间。 min_cpu_time bigint 语句在所有DN上的最小CPU时间,单位为ms。 max_cpu_time bigint 语句在所有DN上的最大CPU时间,单位为ms。 total_cpu_time bigint 语句在所有DN上的CPU总时间,单位为ms。 query

    来自:帮助中心

    查看更多 →

  • SMP并行执行

    SMP性能的影响情况分别进行说明: CPU资源 在一般客户场景中,系统CPU利用率不高的情况下,利用SMP并行架构能够更充分地利用系统CPU资源,提升系统性能。但当数据库 服务器 CPU核数较少,CPU利用率已经比较高的情况下,如果打开SMP并行,不仅性能提升不明显,反而可能因为多线程间的资源竞争而导致性能劣化。

    来自:帮助中心

    查看更多 →

  • 验证并行查询效果

    验证并行查询效果 本章节使用TPCH测试工具测试并行查询对22条QUERY的性能提升情况。 测试的实例信息如下: 实例规格:32 vCPUs | 256 GB 内核版本:2.0.26.1 并行线程数:16 测试数据量:100GB 操作步骤 生成测试数据。 请在https://github

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了