GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    tensorflow 多gpu并行 更多内容
  • 并行导入

    并行导入 GaussDB (DWS)提供了并行导入功能,以快速、高效地完成大量数据导入。介绍GaussDB(DWS)并行导入的相关参数。 raise_errors_if_no_files 参数说明:导入时是否区分“导入文件记录数为空”和“导入文件不存在”。raise_errors_

    来自:帮助中心

    查看更多 →

  • 并行DDL

    并行DDL 传统的DDL操作基于单核和传统硬盘设计,导致针对大表的DDL操作耗时较久,延迟过高。以创建二级索引为例,过高延迟的DDL操作会阻塞后续依赖新索引的DML查询操作。 云数据库 TaurusDB支持并行DDL的功能。当数据库硬件资源空闲时,您可以通过并行DDL功能加速DD

    来自:帮助中心

    查看更多 →

  • 创建Notebook实例

    公共镜像:即预置在ModelArts内部的AI引擎。 可以选择界面显示的公共镜像,也可以单击“前往AI Gallery获取更多镜像”进入AI Gallery镜像页面。AI Gallery上发布了一些较高版本的PyTorch、MindSpore、TensorFlow镜像。进入AI Gallery镜像页

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    开发环境预置镜像分为X86和ARM两类: 表1 X86预置镜像列表 引擎类型 镜像名称 PyTorch pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 pytorch1.4-cuda10.1-cudnn7-ubuntu18

    来自:帮助中心

    查看更多 →

  • 推理专属预置镜像列表

    推理基础镜像详情PyTorch(CPU/GPU) ModelArts提供了以下PyTorch(CPU/GPU)推理基础镜像: 引擎版本一:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本二:pytorch_1.8.2-cuda_11

    来自:帮助中心

    查看更多 →

  • 并行仿真

    并行仿真 Octopus平台的并行仿真模块分为任务配置和仿真任务两部分。用户在任务配置模块,可使用自研仿真算法,根据Octopus自研仿真评测体系,从行车安全、驾驶行为、乘员舒适性等多维度测评在多种条件下的仿真场景中控制算法控制质量。在仿真任务模块,可将仿真任务运行中关键指标变化绘制成图表,直观形象。

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群中需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • 创建GPU函数

    创建GPU函数 GPU函数概述 自定义镜像 方式创建GPU函数 定制运行时方式创建GPU函数 父主题: 创建函数

    来自:帮助中心

    查看更多 →

  • GPU调度概述

    GPU调度概述 工作负载支持使用节点GPU资源,GPU资源使用可以分为如下两种模式: GPU静态分配(共享/独享):按比例给Pod分配GPU显卡资源,支持独享(分配单张/多张显卡)和共享(部分显卡)方式。 GPU虚拟化:U CS On Premises GPU采用xGPU虚拟化技术

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU调度概述 准备GPU资源 创建GPU应用 监控GPU资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • 为什么exec进入容器后执行GPU相关的操作报错?

    为什么exec进入容器后执行GPU相关的操作报错? 问题现象: exec进入容器后执行GPU相关的操作(例如nvidia-smi、使用tensorflow运行GPU训练任务等)报错“cannot open shared object file: No such file or directory”。

    来自:帮助中心

    查看更多 →

  • 使用模型

    CodeArts IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 并行查询简介

    并行查询简介 什么是并行查询 云数据库 TaurusDB支持了并行执行的查询方式,用以降低分析型查询场景的处理时间,满足企业级应用对查询低时延的要求。并行查询的基本实现原理是将查询任务进行切分并分发到多个CPU核上进行计算,充分利用CPU的多核计算资源来缩短查询时间。并行查询的性

    来自:帮助中心

    查看更多 →

  • 并行查询(PQ)

    并行查询(PQ) 并行查询简介 注意事项 开启并行查询 验证并行查询效果 父主题: 常见内核功能

    来自:帮助中心

    查看更多 →

  • 并行处理

    分支名”获取该分支的执行结果。 失败时停止 并行处理出现错误时的是否停止。 True:表示任一并行处理的分支出现错误时,整个任务便停止,并返回错误信息。 False:表示并行处理的分支出现错误后,整个任务会继续执行后续节点。 超时时间(ms) 并行处理过程的最长执行时间,如果超过该时间

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    用户提供更加便捷、高效的GPU计算服务,有效承载AI模型推理、AI模型训练、音视频加速生产、图形图像加速加速工作负载。 GPU函数主要使用于:仿真、模拟、科学计算、音视频、AI和图像处理等场景下,使用GPU硬件加速,从而提高业务处理效率。 表1 GPU函数规格 卡型 vGPU 显存(GB)

    来自:帮助中心

    查看更多 →

  • 功能介绍

    模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持卡环境下的模型分布式训练,大幅度提升模型训练的速度,满足海量样本数据加速训练的需求。 图17 支持训练过程多个GPU运行指标监控 支持在线

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了