GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    tensorflow 不使用gpu 更多内容
  • 使用Tensorflow训练神经网络

    ,完成模型训练大概耗时3分钟,如果指定,默认是1000000次迭代,耗时会比较长。max_steps数值越大,训练时间越久,结果越精确。 该命令是训练图片分类模型,然后单击“下一步”。 图4 设置容器启动命令 配置负载访问信息。 本例中选择“启用”,单击“下一步”。 单击“提交”,然后单击“返回工作负载列表”。

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    -f tf-mnist.yaml 使用GPU训练 TFJob可在GPU场景下进行,该场景需要集群中包含GPU节点,并安装合适的驱动。 在TFJob中指定GPU资源。 创建tf-gpu.yaml文件,示例如下: 该示例的主要功能是基于Tensorflow的分布式架构,利用卷积神经网络(

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    "cpu_image_url" : "aip/tensorflow_2_1:train", "gpu_image_url" : "aip/tensorflow_2_1:train", "image_version" : "tensorflow_2.1.0-cuda_10

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    cuda10.2 CPU/GPU 是 是 tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    单个GPU卡最多虚拟化成20个GPU虚拟设备。 init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    从0制作 自定义镜像 用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用AI引擎Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_6

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1 GPU 是 是 conda3-ubuntu18

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    参数类型 描述 count Integer 不分页的情况下符合查询条件的总数量。 total_count Integer 当前查询结果的数量,设置offset、limit查询参数时,count与total相同。 engine_runtimes Array of EngineAndRuntimesResponse

    来自:帮助中心

    查看更多 →

  • 使用Kubernetes默认GPU调度

    5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 使用nvidia.com/gpu参数指定GPU数量时,requests和limits值需要保持一致。 指定nvidia.com/gpu后,在调度时不会将负载调度到没有GPU的节点。如

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 父主题: 使用ModelArts

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    常用预置包:基于标准的Conda环境,预置了常用的AI引擎,常用的数据分析软件包,例如Pandas,Numpy等,常用的工具软件,例如cuda,cudnn等,满足AI开发常用需求。 预置Conda环境:每个预置镜像都会创建一个相对应的Conda环境和一个基础Conda环境python(包含任何AI引擎),如预置Mi

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    器中运行,其环境规格(如CPU规格,GPU规格)由表3 predictor configs结构决定。 部署在线服务Predictor需要线上服务端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,建议进行模型的工业应用。 当前版本支持

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU)

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • 为什么exec进入容器后执行GPU相关的操作报错?

    为什么exec进入容器后执行GPU相关的操作报错? 问题现象: exec进入容器后执行GPU相关的操作(例如nvidia-smi、使用tensorflow运行GPU训练任务等)报错“cannot open shared object file: No such file or directory”。

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    Notebook”页面,创建TensorFlow或者PyTorch镜像的开发环境实例。创建成功后,单击开发环境实例操作栏右侧的“打开”,在线打开运行中的开发环境。 TensorBoard可视化训练作业,当前仅支持基于TensorFlowPyTorch镜像,CPU/GPU规格的资源类型。请

    来自:帮助中心

    查看更多 →

  • 怎样查看GPU加速型云服务器的GPU使用率?

    怎样查看GPU加速 云服务器 GPU使用率? 问题描述 Windows Server 2012和Windows Server 2016操作系统的GPU加速 服务器 无法从任务管理器查看GPU使用率。 本节操作介绍了两种查看GPU使用率的方法,方法一是在cmd窗口执行命令查看GPU使用

    来自:帮助中心

    查看更多 →

  • 使用模型

    CodeArts IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了