GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    tensorflow 不使用gpu 更多内容
  • 创建模型不同方式的场景介绍

    Gallery中提供了大量免费的模型供用户一键部署,您可订阅AI Gallery上的模型进行AI体验学习。 推理支持的AI引擎 在ModelArts创建模型时,如果使用预置镜像“从OBS中选择”导入模型,则支持如下常用引擎及版本的模型包。 统一镜像Runtime的命名规范:<AI引擎名字及版本> - <硬件及版本:cpu或cuda或cann>

    来自:帮助中心

    查看更多 →

  • 推理专属预置镜像列表

    推理基础镜像详情PyTorch(CPU/GPU) ModelArts提供了以下PyTorch(CPU/GPU)推理基础镜像: 引擎版本一:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本二:pytorch_1.8.2-cuda_11

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU调度概述 准备GPU资源 创建GPU应用 监控GPU资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • GPU加速型

    计算加速型P2vs 计算加速型P2s(主售) 计算加速型P2v 计算加速型P1 推理加速型Pi2(主售) 推理加速型Pi1 相关操作链接: 适用于GPU加速实例的镜像列表 GPU加速型实例安装GRID驱动 GPU加速型实例安装Tesla驱动及CUDA工具包 表1 GPU加速实例总览 类别 实例

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    SN=%s failed to get fan state. GPU设备存在风扇异常 隔离 GPUHealthWarning Device=%s, UUID=%s, SN=%s failed to get power state. GPU设备存在功率查询异常 隔离 故障定位步骤

    来自:帮助中心

    查看更多 →

  • GPU调度概述

    GPU调度概述 工作负载支持使用节点GPU资源,GPU资源使用可以分为如下两种模式: GPU静态分配(共享/独享):按比例给Pod分配GPU显卡资源,支持独享(分配单张/多张显卡)和共享(部分显卡)方式。 GPU虚拟化:U CS On Premises GPU采用xGPU虚拟化技术

    来自:帮助中心

    查看更多 →

  • 创建GPU函数

    创建GPU函数 GPU函数概述 自定义镜像 方式创建GPU函数 定制运行时方式创建GPU函数 父主题: 创建函数

    来自:帮助中心

    查看更多 →

  • 高性能调度

    目前Kubernetes的默认调度器是以Pod为单位进行调度的,区分Pod中运行的业务类型。因此无法满足混部场景对资源分配的特殊要求。针对上述问题,Volcano实现了基于应用模型感知的智能调度算法,根据用户提交的作业类型,针对其应用模型对资源的诉求和整体应用负载的情况,优化调度方式,

    来自:帮助中心

    查看更多 →

  • DWS维表(不推荐使用)

    DWS维表(推荐使用) 功能描述 创建DWS表用于与输入流连接,从而生成相应的宽表。 推荐使用DWS服务自研的DWS Connector。 DWS-Connector的使用方法请参考dws-connector-flink。 前提条件 请务必确保您的账户下已在 数据仓库 服务(DWS)

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    keepdims:bool,是否保留维度为1 name:string;名称(可选) reduction_indices:axis旧的别名(推荐) keep_dims:keepdims别名(推荐) 【约束】 当输入的tensor维数等于4时:输入axis={3,{1,2,3}},keepDims=true,H*W*16*2

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    {3:.0f}MB".format(gpu.memoryFree, gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow等深度学习框架时也可以使用框架自带的api进行查询。 父主题:

    来自:帮助中心

    查看更多 →

  • DWS源表(不推荐使用)

    DWS源表(推荐使用) 功能描述 DLI 将Flink作业从数据仓库服务(DWS)中读取数据。DWS数据库内核兼容PostgreSQL,PostgreSQL数据库可存储更加复杂类型的数据,支持空间信息服务、多版本并发控制(MVCC)、高并发,适用场景包括位置应用、金融保险、互联网电商等。

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型ECS的GPU驱动 操作场景 当GPU加速 云服务器 需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 开发环境的应用示例

    "description": "CPU and GPU general algorithm development and training, preconfigured with AI engine PyTorch1.8", "dev_services": [

    来自:帮助中心

    查看更多 →

  • DWS结果表(不推荐使用)

    DWS结果表(推荐使用) 功能描述 DLI将Flink作业的输出数据输出到数据仓库服务(DWS)中。DWS数据库内核兼容PostgreSQL,PostgreSQL数据库可存储更加复杂类型的数据,支持空间信息服务、多版本并发控制(MVCC)、高并发,适用场景包括位置应用、金融保险、互联网电商等。

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    服务质量优先,服务成本次优 预留GPU实例的计费周期不同于按量GPU实例,预留GPU实例是以实例存活生命周期进行计费,而不考虑实例的活跃与闲置(按请求计费)。因此,相较于按量GPU实例,总体使用成本较高,但相较于长期自建GPU集群,降本幅度达50%以上。 规格最优 函数计算平台提供的GPU实例规格,允许

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    Kubernetes存在的问题 Kubeflow在调度环境使用的是Kubernetes的默认调度器。而Kubernetes默认调度器最初主要是为长期运行的服务设计的,对于AI、大数据等批量和弹性调度方面还有很多的不足。主要存在以下问题: 资源争抢问题 TensorFlow的作业包含Ps和Worker两种不

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了