tensorflow numpy 混合 更多内容
  • 日志提示“AttributeError: 'NoneType' object has no attribute 'dtype'”

    代码在Notebook的keras镜像中可以正常运行,在训练模块使用tensorflow.keras训练报错时,出现如下报错:AttributeError: 'NoneType' object has no attribute 'dtype'。 原因分析 训练镜像的numpy版本与Notebook中不一致。 处理方法

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    开发环境预置镜像分为X86和ARM两类: 表1 X86预置镜像列表 引擎类型 镜像名称 PyTorch pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 pytorch1.4-cuda10.1-cudnn7-ubuntu18

    来自:帮助中心

    查看更多 →

  • 准备工作

    定”,完成实例创建。 安装TensorFlow 进入CodeArts IDE Online实例,创建并打开一个空白工作目录,命令如下。 mkdir ai-test 使用pip安装TensorFlow等依赖包,为加快安装速度此处安装的是tensorflow-cpu,命令如下。 1 2

    来自:帮助中心

    查看更多 →

  • 推理专属预置镜像列表

    推理基础镜像详情PyTorch(CPU/GPU) ModelArts提供了以下PyTorch(CPU/GPU)推理基础镜像: 引擎版本一:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本二:pytorch_1.8.2-cuda_11

    来自:帮助中心

    查看更多 →

  • 混合云

    混合云 应用场景 多云部署、容灾备份 为保证业务高可用,需要将业务同时部署在多个云的容器服务上,在某个云出现事故时,通过统一流量分发的机制,自动地将业务流量切换到其他云上。 流量分发、弹性伸缩 大型企业客户需要将业务同时部署在不同地域的云机房中,并能根据业务的波峰波谷进行自动弹性扩容和缩容,以节约成本。

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    unicode_literals # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib

    来自:帮助中心

    查看更多 →

  • 混合DNS

    名,比如OBS,SFS等 华为 云服务器 使用华为云的DNS,可以解析华为云服务 域名 ,但是无法解析本地数据中心的域名 图1 混合DNS 1 解决方案:华为云提供混合DNS解决方案DNSEP,通过dnsep 把公有云dns地址下沉到客户自己vpc内,可以实现线下dns和公有云dns互相forward。步骤如下:

    来自:帮助中心

    查看更多 →

  • 自定义脚本代码示例

    maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir)

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    Tensorflow算子边界 “.om”模型支持的Tensorflow算子边界如表1所示。 表1 TensorFlow算子边界 序号 Python API C++ API 边界 1 tf.nn.avg_pool AvgPool Type:Mean 【参数】 value:4-D t

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    使用Tensorflow训练神经网络 应用场景 当前主流的大数据、AI训练和推理等应用(如TensorflowCaffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器

    来自:帮助中心

    查看更多 →

  • HTAP混合负载

    HTAP混合负载 本章节介绍HTAP(Hybrid Transactional/Analytical Processing,混合事务/分析处理)特性相关参数。 enable_htap 参数说明:是否开启HTAP特性,开启HTAP特性后,会加载COLVIEW关键字指定列的存量行存数据到内存IMCV(In-memory

    来自:帮助中心

    查看更多 →

  • HTAP混合负载

    HTAP混合负载 本章节介绍HTAP(Hybrid Transactional/Analytical Processing,混合事务/分析处理)特性相关参数。 由于当前版本不支持该特性,enable_htap参数不可以在当前版本中设置,其他GUC参数可以设置,但是由于依赖于enable_htap,实际不生效。

    来自:帮助中心

    查看更多 →

  • 模型推理代码编写说明

    "images":"base64 encode image" } TensorFlow的推理脚本示例 TensorFlow MnistService示例如下。更多TensorFlow推理代码示例请参考TensorflowTensorflow2.1。 推理代码 1 2 3 4 5 6

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • 混合云备份概述

    混合云备份概述 混合云备份简介 云备份支持将线下VMware虚拟机的数据备份到云上,您可以在云上对备份数据进行管理,并支持利用备份数据恢复至云上其他 服务器 中。 云备份中的混合云备份为: VMware备份:支持备份线下VMware虚拟机的数据到云上。 当发生数据中心级别的灾难或者光

    来自:帮助中心

    查看更多 →

  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容:

    来自:帮助中心

    查看更多 →

  • 高性能调度

    no提供了一个针对BigData和AI场景下,通用、可扩展、高性能、稳定的原生批量计算平台,方便AI、大数据、基因、渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管理等能力。 应用场景1:多类型作业混合部署 随着各行各业的发展,涌现出越

    来自:帮助中心

    查看更多 →

  • 模型配置文件编写说明

    ct_analysis(预测分析)等。 model_type 是 String 模型AI引擎,表明模型使用的计算框架,支持常用AI框架和“Image”。 可选的常用AI框架请参见推理支持的AI引擎。 当model_type设置为Image,表示以 自定义镜像 方式创建模型,此时swr

    来自:帮助中心

    查看更多 →

  • 在Notebook中通过Dockerfile从0制作自定义镜像用于推理

    r/work/Dockerfile", image_url="custom_test/tensorflow2.1:1.0.0",#custom_test是组织名,tensorflow2.1是镜像名称,1.0.0是tag context="/home/ma-user/work")

    来自:帮助中心

    查看更多 →

  • 日志提示“Please upgrade numpy to >= xxx to use this pandas version”

    日志提示“Please upgrade numpy to >= xxx to use this pandas version” 问题现象 在安装其他包的时候,有依赖冲突,对numpy库有其他要求,但是发现numpy卸载不了。出现如下类似错误: your numpy version is 1.14

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了