tensorflow numpy 混合 更多内容
  • Tensorflow多节点作业下载数据到/cache显示No space left

    Tensorflow多节点作业下载数据到/cache显示No space left 问题现象 创建训练作业,Tensorflow多节点作业下载数据到/cache显示:“No space left”。 原因分析 TensorFlow多节点任务会启动parameter server(

    来自:帮助中心

    查看更多 →

  • 在Notebook中添加自定义IPython Kernel

    在Notebook中添加自定义IPython Kernel 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda

    来自:帮助中心

    查看更多 →

  • 华为HiLens上可以运行哪些TensorFlow和Caffe的模型?

    华为HiLens上可以运行哪些TensorFlowCaffe的模型? 准确地说,华为HiLens上只能运行“om”模型,华为HiLens管理控制台的“模型导入(转换)”功能支持将部分TensorFlow/Caffe模型转换成“om”模型。 当前可支持的TensorFlow/Caffe算子范围请参

    来自:帮助中心

    查看更多 →

  • 安装依赖

    在本示例中,我们将引入“matplotlib”和“numpy”这两个第三方包,创建一个图标。首先,我们创建一个名为“standardplot.py”的新文件,并将以下代码粘贴进去: import matplotlib.pyplot as plt import numpy as np x = np.linspace(0

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1 GPU 是 是 conda3-ubuntu18

    来自:帮助中心

    查看更多 →

  • 函数依赖包概述

    httplib2 httpclient 0.10.3 numpy 数学计算 pip2.7,numpy==1.16.6 pip3.10,numpy==1.24.2 pip3.9,numpy==1.18.5 pip3.6,numpy==1.18.5 redis redis客户端 2.10

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url) x_train, x_test = x_train / 255.0, x_test / 255.0

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持哪些模型?

    并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 如果模型不符合“.om”模型支持的TensorFlowCaffe算子边界,请选择符合要求的模型。 父主题: 技能开发

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1 GPU 是 是 conda3-ubuntu18

    来自:帮助中心

    查看更多 →

  • 裁剪图片

    crop(src, x, y, w, h, t) 参数说明 表1 参数说明 参数名 是否必选 参数类型 描述 src 是 <class 'numpy.ndarray'>对象 源图,必须为NV21的格式。宽度范围[64, 1920], 2的倍数;高度范围[64, 1080], 2的倍数。

    来自:帮助中心

    查看更多 →

  • 创建Tensorboard

    创建Tensorboard TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard当前只支持基于TensorFlow引擎的训练作业。同一个用户的多个项目,创建Tensorboard任

    来自:帮助中心

    查看更多 →

  • 训练作业日志中提示“No module named .*”

    #定义的配置文件,用于指定依赖包的包名。 “pip-requirements.txt”文件内容如下所示: numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl tensorflow-1.8.0-cp36-cp36m-manylinux1_x86_64.whl 方式

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    支持基于TensorFlowPyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。 TensorFlow引擎的训练脚

    来自:帮助中心

    查看更多 →

  • 训练输出的日志只保留3位有效数字,是否支持更改loss值?

    INFO:tensorflow:global_step/sec: 0.382191 INFO:tensorflow:step: 81600(global step: 81600) sample/sec: 12.098 loss: 0.000 INFO:tensorflow:global_step/sec:

    来自:帮助中心

    查看更多 →

  • TensorFlow-1.8作业连接OBS时反复出现提示错误

    TensorFlow-1.8作业连接OBS时反复出现提示错误 问题现象 基于TensorFlow-1.8启动训练作业,并在代码中使用“tf.gfile”模块连接OBS,启动训练作业后会频繁打印如下日志信息: Connection has been released. Continuing

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    在ModelArts管理控制台,创建一个Notebook实例,镜像选择“TensorFlow-1.13”或“TensorFlow-1.15”。 打开Notebook,在JupyterLab中执行!pip list查看Keras的版本。 图1 查看Keras引擎版本 父主题: 规格限制

    来自:帮助中心

    查看更多 →

  • 多级嵌套子查询以及混合Join的SQL调优

    多级嵌套子查询以及混合Join的SQL调优 操作场景 本章节介绍在多级嵌套以及混合Join SQL查询的调优建议。 前提条件 例如有一个复杂的查询样例如下: select s_name, count(1) as numwait from ( select s_name from (

    来自:帮助中心

    查看更多 →

  • 配置pip源后安装组件失败

    install tensorflow”为例,tensorflow的simple页面为https://mirrors.huaweicloud.com/repository/pypi/simple/tensorflow/。 在页面中可以查看到组件“tensorflow-2.0.0rc

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。 表1 新旧版预置引擎差异 工作环境 预置训练I引擎与版本

    来自:帮助中心

    查看更多 →

  • 云上迁移适配故障

    日志报错 训练输出路径被其他作业使用 PyTorch1.0引擎提示“RuntimeError: std:exception” MindSpore日志提示“ retCode=0x91, [the model stream execute failed]” 使用moxing适配OBS路径,pandas读取文件报错

    来自:帮助中心

    查看更多 →

  • 混合云灾备的三类场景

    跨云备份,是指用户的数据存储在本地数据中心,可结合备份与归档软件,以及华为云基础服务,将本地数据备份或归档到云,从而实现安全、经济、易管理的数据保护。适用于各类企业为提升数据可靠性,在故障发生后可快速通过备份的数据恢复业务的场景。在该场景下,企业为了降低成本,简化备份管理时,可将数据备份到和归档到公有云上。跨云备份有如下优点:降低TCO提

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了