GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    tensorflow gpu训练 更多内容
  • GPU业务迁移至昇腾训练推理

    GPU业务迁移至昇腾训练推理 基于AIGC模型的GPU推理业务迁移至昇腾指导 GPU推理业务迁移至昇腾的通用指导 基于advisor的昇腾训练性能自助调优指导

    来自:帮助中心

    查看更多 →

  • 查询训练作业版本详情

    String 训练作业的引擎名称。目前支持的引擎名称如下: Ascend-Powered-Engine Caffe Horovod MXNet PyTorch Ray Spark_MLlib TensorFlow XGBoost-Sklearn MindSpore-GPU engine_id

    来自:帮助中心

    查看更多 →

  • 基于ModelArts Standard运行GPU训练作业

    基于ModelArts Standard运行GPU训练作业 在ModelArts Standard上运行GPU训练作业的场景介绍 在ModelArts Standard运行GPU训练作业的准备工作 在ModelArts Standard上运行GPU单机单卡训练作业 在ModelArts St

    来自:帮助中心

    查看更多 →

  • 功能介绍

    ensorflow、PyTorchSpark_MLlibMXNet等,及华为自研AI框架MindSpore。提供丰富的CPU、GPU和华为自研Ascend芯片资源,进行模型训练。 模型管理 模型训练服务统一的模型管理菜单。集成在线VSCode开发环境,支持对模型进行编辑修改后

    来自:帮助中心

    查看更多 →

  • 功能介绍

    网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持多机多卡环境下的模型分布式训练,大幅度提升模型训练的速度,满足海量样本数据加速训练的需求。 图17

    来自:帮助中心

    查看更多 →

  • 示例:创建DDP分布式训练(PyTorch+GPU)

    示例:创建DDP分布式训练PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用 自定义镜像 功能 通过torch.distributed.launch命令启动 通过torch

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    gputil import GPUtil as GPU GPU.showUtilization() import GPUtil as GPU GPUs = GPU.getGPUs() for gpu in GPUs: print("GPU RAM Free: {0:.0f}MB |

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    新建训练工程、联邦学习工程、训练服务或超参优化服务。 名称 模型训练名称。 模型训练工程描述 对模型训练工程的描述信息。 创建时间 训练工程、联邦学习工程、训练服务或者超参优化服务的创建时间。 类型 模型训练的类型。 包含如下选项: 模型训练 联邦学习 训练服务 优化服务 创建者 创建训练工程、联邦

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • GPU加速型

    计算加速型P2vs 计算加速型P2s(主售) 计算加速型P2v 计算加速型P1 推理加速型Pi2(主售) 推理加速型Pi1 相关操作链接: 适用于GPU加速实例的镜像列表 GPU加速型实例安装GRID驱动 GPU加速型实例安装Tesla驱动及CUDA工具包 表1 GPU加速实例总览 类别 实例

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    镜像,能直接在ModelArts用于训练作业。 开发环境预置镜像分为X86和ARM两类: 表1 X86预置镜像列表 引擎类型 镜像名称 PyTorch pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 pytorch1.10-cuda10.2-cudnn7-ubuntu18

    来自:帮助中心

    查看更多 →

  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    e Tune的好处在于不用完全重新训练模型,从而提高效率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码

    来自:帮助中心

    查看更多 →

  • 预置框架启动文件的启动流程说明

    启动文件需要解析上述参数。 PyTorch-GPU框架的代码示例,请参见示例:创建DDP分布式训练PyTorch+GPU)中的方式一 TensorFlow-GPU框架启动原理 单机场景下(即选择的实例数为1),ModelArts只会在一个节点上启动一个训练容器,该训练容器独享节点规格的可使用资源。

    来自:帮助中心

    查看更多 →

  • 创建Tensorboard

    创建Tensorboard方式: 创建训练任务的时候同步创建Tensorboard 在模型训练工程代码编辑界面控制台的Tensorboard页签中创建Tensorboard 新建模型训练工程,创建训练任务后,在任务详情的Tensorboard页签中创建Tensorboard 配置训练任务时,AI引擎选择PyT

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() 对训练数据做预处理,并查看训练集中最开始的25个图片。 1 2 3

    来自:帮助中心

    查看更多 →

  • 训练输出的日志只保留3位有效数字,是否支持更改loss值?

    训练输出的日志只保留3位有效数字,是否支持更改loss值? 在训练作业中,训练输出的日志只保留3位有效数字,当loss过小的时候,显示为0.000。具体日志如下: INFO:tensorflow:global_step/sec: 0.382191 INFO:tensorflow:step:

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    请求模式,AI引擎支持部署为同步在线服务或异步在线服务。 sync:同步在线服务 async:异步在线服务 accelerators Array of Accelerator objects AI引擎可使用的加速卡。 arch Array of strings AI引擎架构,目前共两种: x86_64 aarch64

    来自:帮助中心

    查看更多 →

  • 以PyTorch框架创建训练作业(新版训练)

    调用获取训练作业支持的公共规格接口获取训练作业支持的资源规格。 调用获取训练作业支持的AI预置框架接口查看训练作业支持的引擎类型和版本。 调用创建算法接口创建一个算法,记录算法id。 调用创建训练作业接口使用刚创建的算法返回的uuid创建一个训练作业,记录训练作业id。 调用查询训

    来自:帮助中心

    查看更多 →

  • 查询训练作业参数详情

    engine_type Integer 训练作业的引擎类型。 engine_name String 训练作业的引擎名称。 engine_id Long 训练作业的引擎ID。 engine_version String 训练作业使用的引擎版本。 train_url String 训练作业的输出文件OBS

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • Tensorflow算子边界

    Tensorflow算子边界 “.om”模型支持的Tensorflow算子边界如表1所示。 表1 TensorFlow算子边界 序号 Python API C++ API 边界 1 tf.nn.avg_pool AvgPool Type:Mean 【参数】 value:4-D t

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了