GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    tensorflow gpu训练 更多内容
  • 如何关闭Mox的warmup

    ,这是使用warm up的原因。等到训练过程基本稳定之后就可以使用原先设定的初始学习率进行训练。 原因分析 Tensorflow分布式有多种执行模式,mox会通过4次执行50 step记录执行时间,选择执行时间最少的模型。 处理方法 创建训练作业时,在“运行参数”中增加参数“va

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 大数据、AI计算 当前主流的大数据、AI训练和推理等应用(如TensorflowCaffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。 云容器实例提供如下特性,能够很好的支持这类场景。

    来自:帮助中心

    查看更多 →

  • 基础支撑系统

    况,资源占用指标包括CPU,内存,AI芯片;支持查看在线推理服务实时日志;支持在线服务滚动升级,实现平滑更新在线服务AI应用版本;支持对在线服务的查询,更新,对在线服务进行启停;支持从控制台发起预测请求进行在线服务效果测试;支持对在线推理服务进行数据采集,采集到的数据自动上传至对象存储;

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU训练作业的场景介绍

    在ModelArts Standard上运行GPU训练作业的场景介绍 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适的存储及训练方案可提升模型训练效率与资源性价比。ModelArts Standard支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。 ModelArts

    来自:帮助中心

    查看更多 →

  • 模型调试

    model_type 是 String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。 model_algorithm 否 String 模型算法,表示模型的

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    GPT-2基于Server适配PyTorch GPU训练推理指导 场景描述 本文将介绍在GP Ant8裸金属 服务器 中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。 背景信息 Megatron-DeepSpeed

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“Spark_MLlib”。具体版本信息可参考支持的常用引擎及其Runtime。 示例代码 在ModelArts

    来自:帮助中心

    查看更多 →

  • 训练作业日志中提示“No module named .*”

    named npu_bridge.npu_init 检查下训练作业使用的规格是否支持NPU,有可能是训练时使用了GPU规格,导致发生了NPU相关调用报错。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上note

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速 云服务器 需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • 最佳实践

    制作 自定义镜像 并用于训练Pytorch+CPU/GPU):本案例介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎Pytorch训练使用的资源是CPU或GPU。 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU):本案例

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Kubeflow

    在CCE集群中部署使用Kubeflow Kubeflow部署 Tensorflow训练 使用Kubeflow和Volcano实现典型AI训练任务 父主题: 批量计算

    来自:帮助中心

    查看更多 →

  • 创建单机多卡的分布式训练(DataParallel)

    创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上

    来自:帮助中心

    查看更多 →

  • MoXing

    使用MoXing复制数据报错 如何关闭Mox的warmup Pytorch Mox日志反复输出 moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune? 训练作业使用MoXing复制数据较慢,重复打印日志 MoXi

    来自:帮助中心

    查看更多 →

  • 在ModelArts Standard上运行GPU单机多卡训练作业

    前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。 在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。单击“创建训练作业”进入创建训练作业页面。 在“创建训练作业”页面,填写相关参数信息,然后单击“提交”。 创建方式:选择“自定义算法”。 启动方式:选择“自定义”。

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    CUDA in forked subprocess” 训练作业找不到GPU 日志提示“RuntimeError: CUDA error: an illegal memory access was encountered” 父主题: 训练作业

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    用户提供更加便捷、高效的GPU计算服务,有效承载AI模型推理、AI模型训练、音视频加速生产、图形图像加速加速工作负载。 GPU函数主要使用于:仿真、模拟、科学计算、音视频、AI和图像处理等场景下,使用GPU硬件加速,从而提高业务处理效率。 表1 GPU函数规格 卡型 vGPU 显存(GB)

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • OBS操作相关故障

    OBS操作相关故障 读取文件报错,如何正确读取文件 TensorFlow-1.8作业连接OBS时反复出现提示错误 TensorFlow在OBS写入TensorBoard到达5GB时停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了