虚拟私有云 VPC

虚拟私有云(Virtual Private Cloud)是用户在华为云上申请的隔离的、私密的虚拟网络环境。用户可以自由配置VPC内的IP地址段、子网、安全组等子服务,也可以申请弹性带宽和弹性IP搭建业务系统

 

    预测深度学习网络模型 更多内容
  • 使用ModelArts Standard自动学习实现口罩检测

    在服务详情页,选择“预测”页签。 图5 上传预测图片 单击“上传”选择上传一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图6 查看预测结果(1)--没戴口罩 图7 查看预测结果(2)--戴口罩 后续操作:清除相应资源 在完成预测之后,建议关闭服务,以免产生不必要的计费。

    来自:帮助中心

    查看更多 →

  • 产品优势

    海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,

    来自:帮助中心

    查看更多 →

  • 方案概述

    ,同时结合华为大数据、深度学习、大模型等技术深度挖掘企业质量管理潜能,形成端到端的智能决策和快速响应。 解决方案实践的应用行业推荐: 服务于制造业,主要目标行业为智能汽车与新能源、高端装备、电子3C、半导体等行业。针对解决制造企业普遍存在的质量问题难以预测、质量结果无法追溯、上下

    来自:帮助中心

    查看更多 →

  • ModelArts自动学习与ModelArts PRO的区别

    ModelArts自动学习与ModelArts PRO的区别 ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造

    来自:帮助中心

    查看更多 →

  • 部署图像分类服务

    进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的

    来自:帮助中心

    查看更多 →

  • 云原生网络2.0模型说明

    。由于不需要使用容器隧道封装和NAT地址转换,云原生网络2.0模型与容器隧道网络模型和VPC网络模型相比具有比较高的网络性能。 图1 云原生网络2.0 在云原生网络2.0模型的集群中,Pod依赖弹性网卡/辅助弹性网卡对外进行网络通信: 裸金属节点上运行的Pod使用ENI网卡。 E

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 预测接口(排序)

    预测接口(排序) 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是

    来自:帮助中心

    查看更多 →

  • 日常风险预测

    比较指标值和阈值的关系。 比较关系分为>、>=、<、<= 2)智能预测:一种趋势预测方式,根据输入,基于算法预测未来容量趋势。 预测趋势:基于预测算法,根据参考时间段内(过去一个月)的容量趋势,预测未来7天的容量趋势; 风险实例:参考时间段内的容量和预测时间段内的容量,任何一个满足安全阈值,就认为是风险实例,会被输出到风险结果中。

    来自:帮助中心

    查看更多 →

  • 关联预测(link

    关联预测(link_prediction)(1.0.0) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入起点ID。 String - - target 是 输入终点ID。 String - - 表2 response_data参数说明

    来自:帮助中心

    查看更多 →

  • 服务预测失败

    在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4503 当使用推理的镜像并且出现MR.XXXX类型的错误时,表示已进入模型服务,一般是模型推理代码编写有问题。 请根据构建日志报错信息,定位服务预测失败原因,修改模型推理代码后,重新导入模型进行预测。

    来自:帮助中心

    查看更多 →

  • 预测的应用

    预测的应用 用户开通预测功能后,可以通过预测功能来估计未来时间内可能消耗的成本和用量,也可以根据预测数据设置预算提醒,以达到基于预测成本进行预算监控的目的。 查看预测数据 登录“成本中心”。 选择“成本洞察 > 成本分析”。 设置周期。 按月查看预测数据时,支持的周期为:当前月、+3M、+6M、+12M;

    来自:帮助中心

    查看更多 →

  • 方案概述

    推理脚本、配置文件、模型数据;另一个用于存储数据集及数据集预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测汽车价值评估结果。 使用 函数工作流 FunctionGraph创建一个函数,进行数据处理并调用ModelArts在线服务获取预测结果,并存储至OBS桶。

    来自:帮助中心

    查看更多 →

  • 部署物体检测服务

    入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出结果。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理是 可信智能计算服务 提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题: 可信联邦学习作业

    来自:帮助中心

    查看更多 →

  • 最新动态

    人脸检测技能 面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。 车牌识别技能

    来自:帮助中心

    查看更多 →

  • 模型评估

    模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算

    来自:帮助中心

    查看更多 →

  • 训练数据集创建流程

    训练数据集创建流程 数据是大模型训练的基础,提供了模型学习所需的知识和信息。大模型通过对大量数据的学习,能够理解并抽象出其中的复杂模式,从而进行精准的预测和决策。在训练过程中,数据的质量和多样性至关重要。高质量的数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种情况。因

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了