虚拟私有云 VPC

虚拟私有云(Virtual Private Cloud)是用户在华为云上申请的隔离的、私密的虚拟网络环境。用户可以自由配置VPC内的IP地址段、子网、安全组等子服务,也可以申请弹性带宽和弹性IP搭建业务系统

 

    深度学习网络模型 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • VPC网络模型

    VPC网络模型 VPC网络模型说明 扩展集群容器网段 父主题: 容器网络

    来自:帮助中心

    查看更多 →

  • 迁移网络模型

    迁移网络模型 对象存储迁移 服务( OMS )的网络模型设计考虑了数据的传输效率、安全性和可靠性。OMS支持大文件分片、大量数据的快速迁移。同时,它还支持断点续传功能,即使在迁移过程中遇到网络中断等异常情况,也能从断点处继续传输,确保数据的完整性和迁移的连续性。 图1 网络模型图 场景一:跨Region/跨云迁移

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 容器网络模型对比

    容器网络模型对比 容器网络为集群内Pod分配IP地址并提供网络服务,CCE支持如下几种网络模型,您可在创建集群时进行选择。 云原生网络2.0 VPC网络 容器隧道网络 网络模型对比 表1主要介绍CCE所支持的网络模型,您可根据实际业务需求进行选择。 集群创建成功后,网络模型不可更改,请谨慎选择。

    来自:帮助中心

    查看更多 →

  • 容器隧道网络模型

    容器隧道网络模型 容器隧道网络模型说明 父主题: 容器网络

    来自:帮助中心

    查看更多 →

  • VPC网络模型说明

    VPC网络模型说明 VPC网络模型 VPC网络模型 虚拟私有云VPC 的路由方式与底层网络深度整合,适用于高性能场景,但节点数量受限于虚拟私有云VPC的路由配额。在VPC网络模型中,容器网段独立于节点网段进行单独设置。在容器IP地址分配时,集群中的每个节点会被分配固定大小的容器IP

    来自:帮助中心

    查看更多 →

  • 功能介绍

    置经典网络结构并支持用户自定义上传网络,同时,针对遥感影像多尺度、多通道、多载荷、多语义等特征,内置遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络深度网络因子分解机的改进版本,深度网络因子分解机通过向

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 排序策略

    单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。 中量级:训练时长约为轻量级的3-5倍;

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。 输出结果:数字人视频。

    来自:帮助中心

    查看更多 →

  • 容器隧道网络模型说明

    容器隧道网络模型说明 容器隧道网络模型 容器隧道网络是在主机网络平面的基础上,通过隧道封装技术来构建一个独立的容器网络平面。CCE集群容器隧道网络使用了VXLAN作为隧道封装协议,并使用了Open vSwitch作为后端虚拟交换机。VXLAN是一种将以太网报文封装成UDP报文进行隧道传输的协议,而Open

    来自:帮助中心

    查看更多 →

  • 云原生网络2.0模型

    云原生网络2.0模型 云原生网络2.0模型说明 为 CCE Turbo 集群配置默认容器子网 使用注解为Pod绑定安全组 使用安全组策略为工作负载绑定安全组 使用容器网络配置为命名空间/工作负载绑定子网及安全组 为Pod配置固定IP 为Pod配置EIP 为Pod配置固定EIP 为IPv6双栈网卡的Pod配置共享带宽

    来自:帮助中心

    查看更多 →

  • 集群网络模型选择及各模型区别

    集群网络模型选择及各模型区别 自研高性能商业版容器网络插件,支持容器隧道网络、VPC网络、云原生网络2.0网络模型: 集群创建成功后,网络模型不可更改,请谨慎选择。 容器隧道网络(Overlay):基于底层VPC网络构建了独立的VXLAN隧道化容器网络,适用于一般场景。VXLAN

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成熟的权限管理体系,保障数据安全的同时,确保团队高效协作。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了