虚拟私有云 VPC

虚拟私有云(Virtual Private Cloud)是用户在华为云上申请的隔离的、私密的虚拟网络环境。用户可以自由配置VPC内的IP地址段、子网、安全组等子服务,也可以申请弹性带宽和弹性IP搭建业务系统

 

    预测深度学习网络模型 更多内容
  • 场景描述

    据提升乳腺癌预测模型的准确率。 进一步地,可根据该模型案例发散,构建老年人健康预测、高血压预测、失能早期预警模型等。 图1 乳腺癌预测研究应用场景示意 作业发起方通过计算节点上传数据、待训练模型的定义文件; 作业发起方配置 TICS 的横向联邦学习作业,启动训练; 模型参数、梯度数据

    来自:帮助中心

    查看更多 →

  • 容器隧道网络模型说明

    容器隧道网络模型说明 容器隧道网络模型 容器隧道网络是在主机网络平面的基础上,通过隧道封装技术来构建一个独立的容器网络平面。CCE集群容器隧道网络使用了VXLAN作为隧道封装协议,并使用了Open vSwitch作为后端虚拟交换机。VXLAN是一种将以太网报文封装成UDP报文进行隧道传输的协议,而Open

    来自:帮助中心

    查看更多 →

  • 云原生网络2.0模型

    云原生网络2.0模型 云原生网络2.0模型说明 为 CCE Turbo 集群配置默认容器子网 使用注解为Pod绑定安全组 使用安全组策略为工作负载绑定安全组 使用容器网络配置为命名空间/工作负载绑定子网及安全组 为Pod配置固定IP 为Pod配置EIP 为Pod配置固定EIP 为IPv6双栈网卡的Pod配置共享带宽

    来自:帮助中心

    查看更多 →

  • 预测接口

    预测接口 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是 String

    来自:帮助中心

    查看更多 →

  • 批量预测

    批量预测 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 创建批量预测作业 编辑批量预测作业 执行批量预测作业 删除批量预测作业 父主题: 联邦预测作业

    来自:帮助中心

    查看更多 →

  • 预测机制

    预测机制 预测的准确性 预测主要是基于用户在华为云上的历史成本和历史用量情况,对未来的成本和用量进行预测。您可以使用预测功能来估计未来时间内可能消耗的成本和用量,并根据预测数据设置预算提醒,以达到基于预测成本进行预算监控的目的。由于预测是一种估计值,因此可能与您在每个账期内的实际数据存在差异。

    来自:帮助中心

    查看更多 →

  • ModelArts

    ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验 ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测)

    来自:帮助中心

    查看更多 →

  • 集群网络模型选择及各模型区别

    集群网络模型选择及各模型区别 自研高性能商业版容器网络插件,支持容器隧道网络、VPC网络、云原生网络2.0网络模型: 集群创建成功后,网络模型不可更改,请谨慎选择。 容器隧道网络(Overlay):基于底层VPC网络构建了独立的VXLAN隧道化容器网络,适用于一般场景。VXLAN

    来自:帮助中心

    查看更多 →

  • 设置网络防御策略(VPC网络模型集群)

    设置网络防御策略(VPC网络模型集群) VPC网络模型的集群支持通过设置网络防御策略限制访问容器宿主 服务器 的流量。当未配置安全组规则时,默认所有进出容器宿主服务器的流量都被允许。 本章节介绍如何为VPC网络模型的集群设置网络防御策略。 创建网络防御策略 登录管理控制台。 在页面左

    来自:帮助中心

    查看更多 →

  • PERF02-02 容量规划

    工智能机器学习算法,以便更准确地预测未来的需求,评估工作负载的资源需求。 使预测与工作负载目标保持一致 为了确保预测与工作负载目标保持一致,需要定期对预测进行评估,比较实际结果与预测结果,根据需要对容量预测模型进行调整。例如新的应用或服务添加到系统中,那么容量预测模型就需要考虑这

    来自:帮助中心

    查看更多 →

  • 使用AutoGenome镜像

    读取配置文件:通过json文件配置输入和输出路径。 模型训练:针对提供的数据和模型参数,AutoGenome会搜索得到最优的神经网络结构。训练过程经过模型搜索阶段和模型训练阶段,在模型搜索阶段,根据json文件中的配置参数,对于选定的模型参数会训练一定步数,搜索得到较好结果的参数进行后

    来自:帮助中心

    查看更多 →

  • 应用场景

    基站智能关断节能:基于准确的基站流量预测实施基站载频关断,降低基站能耗。提供2个训练集(性能,工参), 41维特征。 固定接入训练数据集 提供用于固定接入场景AI模型训练的数据,包括PON固定接入网络设备的拓扑、性能、告警、业务体验等数据。 场景案例 PON光网络故障预测:基于PON光网络无源器件指标的

    来自:帮助中心

    查看更多 →

  • 方案概述

    、推理脚本、配置文件、模型数据。另一个用于存储数据集及数据集预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 FunctionGraph创建一个函数,进行数据处理并调用ModelArts在线服务获取预测结果,并存储至OBS桶。

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String 标签数据集,最大长度100 label_agent String 标签方 可信计算 节点,最大长度100

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否 String 标签数据集,最大长度100 label_agent 否 String 标签方可信计算节点,最大长度100

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 部署预测分析服务

    模型部署完成后,您可输入代码进行测试。在“自动学习”页面,在服务部署节点,单击“实例详情”进入“在线服务”界面,在“预测”页签的“预测代码”区域,输入调试代码。 单击“预测”进行测试,预测完成后,右侧“返回结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签,重新进行模型训练及模型部署。如果您对

    来自:帮助中心

    查看更多 →

  • 科学计算大模型训练流程与选择建议

    在实际流程中,通过设定训练指标对模型进行监控,以确保效果符合预期。在微调后,评估用户模型,并进行最终优化,确认其满足业务需求后,进行部署和调用,以便实际应用。 科学计算大模型选择建议 科学计算大模型支持训练的模型类型有:中期天气要素预测模型、区域中期海洋智能预测模型。 中期天气要素预测模型选择建议:

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    图3 模型评估报告 表1 评估结果参数说明 参数 说明 recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了