AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练的时间 更多内容
  • 如何修改机器人规格,不同版本机器人区别

    适用于对机器人答准率有高要求,数据样本大场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在 智能问答机器人 列表中,选择“操作”列“规格修改”。 图1 规格修改 依据使用需求修改机器人规格。 图2 修改 问答机器人 规格

    来自:帮助中心

    查看更多 →

  • 场景介绍

    略优化”技巧来避免过大策略更新,从而减少了训练过程中不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练方法。 它基于一个预先训练模型,通过调整模型参数,使其能够更好地拟合特定任务数据分布。

    来自:帮助中心

    查看更多 →

  • 根据条件查询所有场景ID(API名称:queryTaskPictureByCondition)

    是 无 Authorization bearer ${access_token} 是 bearer +“ ”+5.2.1中获取access_token值 请求参数 参数 类型 是否必填 描述 signSiteId Int 否 作业对象ID signSiteName String

    来自:帮助中心

    查看更多 →

  • GPU加速型

    NVLink技术,实现GPU之间直接通信,提升GPU之间数据传输效率。能够提供超高通用计算能力,适用于AI深度学习、科学计算,在深度学习训练、科学计算、计算流体动力学、计算金融、地震分析、分子建模、基因组学等领域都能表现出巨大计算优势。 规格 表8 P2vs型 弹性云服务器 规格 规格名称 vCPU

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    Kubernetes存在问题 Kubeflow在调度环境使用是Kubernetes默认调度器。而Kubernetes默认调度器最初主要是为长期运行服务设计,对于AI、大数据等批量和弹性调度方面还有很多不足。主要存在以下问题: 资源争抢问题 TensorFlow作业包含Ps和W

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式、信任边界缺失多个参与方之间建立互信空间; 实现跨组织、跨行业多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)联邦计算;

    来自:帮助中心

    查看更多 →

  • 训练模型

    高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 多语种文本分类工作流

    来自:帮助中心

    查看更多 →

  • 负载伸缩概述

    U CS 为您提供多集群工作负载自动扩缩能力。UCS负载伸缩能力可基于工作负载系统指标变动、自定义指标变动或固定时间周期对工作负载进行自动扩缩,以提升多集群工作负载可用性和稳定性。 UCS负载伸缩优势 UCS负载伸缩能力优势主要在于: 多集群:多集群场景下负载伸缩,可以对集群联邦中多个集群实行统一的负载伸缩策略。

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 应用场景

    买了又买等推荐场景,但各个子场景运营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    问题5:训练完成使用vllm0.6.0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存tokenizer.json文件中“merges”时保存是拆开列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: ①更新transformes和tokenizers版本

    来自:帮助中心

    查看更多 →

  • 训练模型

    ”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少情况,建议每个标签样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当的学习率和训练轮次。

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    这是通过在与任务相关微调数据集上训练模型来实现,所需微调量取决于任务复杂性和数据集大小。在深度学习中,微调用于改进预训练模型性能。 2 生成模型服务 将已有模型部署为模型服务 接入模型服务 支持通过API接入模型服务,同时支持将平台预置模型进行微调后,部署为模型服务,

    来自:帮助中心

    查看更多 →

  • 如何关闭Mox的warmup

    如何关闭Moxwarmup 问题现象 训练作业moxTensorflow版本在运行时候,会先执行“50steps” 4次,然后才会开始正式运行。 warmup即先用一个小学习训练几个epoch(warmup),由于网络参数是随机初始化,如果一开始就采用较大学习率会出现数值不稳定的问题,这是使用warm

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单图像分类。

    来自:帮助中心

    查看更多 →

  • 产品术语

    标签列 模型训练输出预测值,对应数据集一个特征列。例如鸢尾花分类建模数据集提供了五列数据:花瓣长度和宽度、花萼长度和宽度、鸢尾花种类。其中,鸢尾花种类就是标签列。 C 超参 模型外部参数,必须用户手动配置和调整,可用于帮助估算模型参数值。 M 模型包 将模型训练生成模型进行

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型模板名,决定训练和预测调用函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型模板名,决定训练和预测调用函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入和预处理训练数据集 参考TensorFlow官网教程,创建一个简单图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    问题5:训练完成使用vllm0.6.0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存tokenizer.json文件中“merges”时保存是拆开列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了