AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练的时间 更多内容
  • 产品术语

    标签列 模型训练输出预测值,对应数据集一个特征列。例如鸢尾花分类建模数据集提供了五列数据:花瓣长度和宽度、花萼长度和宽度、鸢尾花种类。其中,鸢尾花种类就是标签列。 C 超参 模型外部参数,必须用户手动配置和调整,可用于帮助估算模型参数值。 M 模型包 将模型训练生成模型进行

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    8:图像饱和度与训练数据集特征分布存在较大偏移。 9:图像色彩丰富程度与训练数据集特征分布存在较大偏移。 10:图像清晰度与训练数据集特征分布存在较大偏移。 11:图像目标框数量与训练数据集特征分布存在较大偏移。 12:图像中目标框面积标准差与训练数据集特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入和预处理训练数据集 参考TensorFlow官网教程,创建一个简单图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    模型微调是指调整大型语言模型参数以适应特定任务过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现场景。这是通过在与任务相关微调数据集上训练模型来实现,所需微调量取决于任务复杂性和数据集大小。在深度学习中,微调用于改进预训练模型性能。 支持将平台资产中心预置部分模型作

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    训练声音分类模型 完成音频标注后,可以进行模型训练。模型训练目的是得到满足需求声音分类模型。由于用于训练音频,至少有2种以上分类,每种分类音频数不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型自动训练。 在新版自动学习页面,单击项目名称进入运

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单图像分类。

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型模板名,决定训练和预测调用函数接

    来自:帮助中心

    查看更多 →

  • 方案概述

    现向安全可信路线技术转型; 采用华为云 MRS 存算分离以及鲲鹏解决方案,在保证性能前提下,实现计算与存储独立按需扩容,帮助国蓝中天轻松应对业务浪涌,提升资源整体利用率,有效降低了未来激增信息存储成本;提升国蓝中天后续自主技术改造,打造更贴合自身技术驱动力。 方案优势 本地

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    precision:精确率 被模型预测为某个分类所有样本中,模型正确预测样本比率,反映模型对负样本区分能力。 accuracy:准确率 所有样本中,模型正确预测样本比率,反映模型对样本整体识别能力。 f1:F1值 F1值是模型精确率和召回率加权调和平均,用于评价模型好坏,当F1较高时说明模型效果较好。

    来自:帮助中心

    查看更多 →

  • 取得正在训练的模组

    请联系客服人员检查您账号的当前状态。 响应状态码: 404 请求内容未找到:请检查请求路径。 响应状态码: 500 业务失败:请依次确认您请求中各参数取值。 错误码 无。 报文样例 场景描述:取得正在训练模组 请求头: x-app-key:***************

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    训练文本分类模型 完成数据标注后,可进行模型训练。模型训练目的是得到满足需求文本分类模型。由于用于训练文本,至少有2种以上分类(即2种以上标签),每种分类文本数不少于20个。因此在单击“继续运行”按钮之前,请确保已标注文本符合要求。 操作步骤 在新版自动学习页面,

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    用于指定预处理数据工作线程数。随着线程数增加,预处理速度也会提高,但也会增加内存使用。 per_device_train_batch_size 1 指定每个设备训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积步数,这可以增加批次大小而不增加内存消耗。可参考表1

    来自:帮助中心

    查看更多 →

  • 场景介绍

    它基于一个预先训练模型,通过调整模型参数,使其能够更好地拟合特定任务数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型知识和特征表示,从而加速训练过程并提高模型性能。 LoRA微调LoRA(Low-Rank Adaptation):微调是一种用于调整大型预训练模型的高效微调技术。

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    FINISHED表示训练成功 FAILED表示训练失败。 STOPPED表示被停止训练任务。 评估报告 单击可查看训练评估报告详情。 资源占用 显示训练算法CPU、GPU和 RAM 占用情况。 峰值 显示训练算法CPU、GPU和RAM使用过程中峰值。 查看训练任务系统日志、运行日志和运行图。

    来自:帮助中心

    查看更多 →

  • ModelArts

    订阅免费模型 发布免费模型 数据集分享和下载 AI Gallery资产集市提供了数据集分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要数据集,存储至当前帐号OBS桶或ModelArts数据集列表。分享者可将已处理过数据集发布至AI Gallery。 下载数据集

    来自:帮助中心

    查看更多 →

  • 套餐包

    要,自行购买适用规格套餐包。 适用场景 ModelArts服务支持购买套餐包,根据用户选择使用资源不同进行收费。您可以根据业务需求选择使用不同规格套餐包。 ModelArts提供了AI全流程开发套餐包,面向有AI基础开发者,提供机器学习深度学习算法开发及部署全功能,

    来自:帮助中心

    查看更多 →

  • 方案概述

    )保存和加载。训练数据读取要尽量读得快,减少计算对 I/O 等待,而 Checkpoint主要要求高吞吐、减少训练中断时间。 文件接口方式数据共享访问:由于 AI 架构需要使用到大规模计算集群(GPU/NPU 服务器 ),集群中服务器访问数据来自一个统一数据源,即一个

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了