AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练及加权 更多内容
  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    ,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • 哪里可以了解Atlas800训练服务器硬件相关内容

    t9处理器的AI训练 服务器 ,实现完全自主可控,广泛应用于深度学习模型开发和AI训练服务场景,可单击此处查看硬件三维视图。 Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 自动学习项目中,如何进行增量训练?

    自动学习项目中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。

    来自:帮助中心

    查看更多 →

  • 编辑代码(简易编辑器)

    :删除文件或文件夹。 :刷新代码目录。 数据集目录:包含数据集文件夹数据集实例。系统支持通过Spread编辑器打开csv文件,支持用户在训练工程编辑界面打开数据集实例。 任务目录:包含联邦学习训练工程已经执行正在执行的训练任务存储目录结构。包括codes文件、log文件、meta文件、model文件等。

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    问答模型训练管理 专业版 适合企业复杂对话流程,需要多轮对话的场景,包括以下功能模块: 包含“高级版”功能,以及以下功能。 多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练训练作业的预置框架介绍

    来自:帮助中心

    查看更多 →

  • ModelArts

    需关注安装配置,即开即用。 Jupyterlab简介常用操作 案例教程 本地IDE(PyCharm) ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成代码上传、提交训练作业、将训练日志获取到本地展示等,用户只需要专注于本地的代码开发即可。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • 修订记录

    2020-08-17 根据最新的模型训练服务,更新“模型训练服务简介”章节描述。 新建数据集和导入数据章节“支持超大文件(10G)上传”功能增强。 模型训练任务界面优化,对应刷新模型训练截图界面参数描述。 模型验证任务界面优化,对应刷新模型验证截图界面参数描述。 2020-07-16

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    集成50+电信领域AI算子&项目模板提升训练效率,降低AI开发门槛,让开发者快速完成模型开发和训练 AutoML自动完成特征选择、超参选择算法选择,提升模型开发效率 高效开发工具JupyterLab和WebIDE:交互式编码体验、0编码数据探索云端编码调试 联邦学习&重训练,保障模型应用效果

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • 应用场景

    数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • 产品优势

    集成50+电信领域AI算子&项目模板提升训练效率,降低AI开发门槛,让开发者快速完成模型开发和训练 AutoML自动完成特征选择、超参选择算法选择,提升模型开发效率 高效开发工具JupyterLab和WebIDE:交互式编码体验、0编码数据探索云端编码调试 联邦学习&重训练,保障模型应用效果

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    bf16: true fp16,配置以下参数 fp16: true 是否使用自定义数据集 是,参考准备数据(可选)后,填写自定义注册后数据集前缀名称数据集绝对路径,参考表1dataset_dir行,如demo.json数据集前缀则为demo dataset: demo dataset_dir:

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    让科研过程标准化、可执行。 药物研发 提供多个药物研发AI模型、AI算法、药物 知识图谱 ,支撑药企高效地开展药物研发工作。 医疗智能体 深度学习算法药物分析服务融入药物研发过程,让药企能更快速高效地完成药物研发,节约研发成本。 产品优势 提供开放的、易于扩展的平台架构。 提供端到端的AI赋能平台加速AI的研发和应用。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了