AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 多变量时间序列预测 更多内容
  • 实时预测

    实时预测 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。 创建实时预测作业 执行实时预测作业 删除实时预测作业 父主题: 联邦预测作业

    来自:帮助中心

    查看更多 →

  • 变量

    变量 输入变量 输出变量 本地变量 父主题: Terraform 配置指南

    来自:帮助中心

    查看更多 →

  • 变量

    。 递归地嵌套变量引用,提高灵活性。 合并多个变量引用以相互覆盖。 约束与限制 只能在serverless.yml的values属性中使用变量,而不能使用键属性。因此,您不能在自定义资源部分中使用变量生成动态逻辑ID。 从环境变量中引用变量 要引用环境变量中的变量,请在serverless

    来自:帮助中心

    查看更多 →

  • 使用“能力调测”调用科学计算大模型

    根据不同场景完成页面参数配置。 天气/降水预测场景的参数配置,请参考表1。 表1 科学计算大模型能力调测参数说明(天气/降水预测) 参数 说明 场景 支持选择全球中期天气要素预测、全球中期降水预测。 全球中期天气要素预测:通过该模型可以对未来一段时间的天气进行预测。 全球中期降水预测:通过该模型可以对未来一段时间的降水情况进行预测。

    来自:帮助中心

    查看更多 →

  • 变量

    变量 输入变量 输出变量 本地变量 父主题: 配置指南

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手

    来自:帮助中心

    查看更多 →

  • 产品功能

    搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测 可信智能计算 节点 数据参与方使

    来自:帮助中心

    查看更多 →

  • 预测接口

    预测接口 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是 String

    来自:帮助中心

    查看更多 →

  • 批量预测

    批量预测 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 创建批量预测作业 编辑批量预测作业 执行批量预测作业 删除批量预测作业 父主题: 联邦预测作业

    来自:帮助中心

    查看更多 →

  • 预测机制

    预测机制 预测的准确性 预测主要是基于用户在华为云上的历史成本和历史用量情况,对未来的成本和用量进行预测。您可以使用预测功能来估计未来时间内可能消耗的成本和用量,并根据预测数据设置预算提醒,以达到基于预测成本进行预算监控的目的。由于预测是一种估计值,因此可能与您在每个账期内的实际数据存在差异。

    来自:帮助中心

    查看更多 →

  • 在推理生产环境中部署推理服务

    --distributed-executor-backend:卡推理启动后端,可选值为"ray"或者"mp",其中"ray"表示使用ray进行启动卡推理,"mp"表示使用python多进程进行启动卡推理。默认使用"mp"后端启动卡推理。 推理启动脚本必须名为run_vllm.sh,不可修改其他名称。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整

    来自:帮助中心

    查看更多 →

  • 变量

    变量 变量连接器包含“追加到数组变量”、“追加到字符串变量”、“数值递减”、“数值递增”、“初始化变量”、“变量赋值”六个执行动作。建议使用变量V2连接器。 连接参数 变量连接器无需认证,无连接参数。 追加到数组变量 需要先定义一个数组变量,可将值内填写的数据,以字符串的形式追加

    来自:帮助中心

    查看更多 →

  • 在推理生产环境中部署推理服务

    ackend:卡推理启动后端,可选值为"ray"或者"mp",其中"ray"表示使用ray进行启动卡推理,"mp"表示使用python多进程进行启动卡推理。默认使用"mp"后端启动卡推理。 --enforce-eager:未设置INFER_MODE环境变量时,部分模型会默

    来自:帮助中心

    查看更多 →

  • 使用模型

    使用模型 用训练好的模型预测测试集中的某个图片属于什么类别,先显示这个图片,命令如下。 1 2 3 # display a test image plt.figure() plt.imshow(test_images[9]) 图1 显示用以测试的图片 查看预测结果,命令如下。 1 2

    来自:帮助中心

    查看更多 →

  • 预测类数据集格式要求

    预测类数据集格式要求 平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子(特征),用于预测连续变量的值,与时序数据不

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1, 0, 0]表示,1用向量[0

    来自:帮助中心

    查看更多 →

  • IAM 身份中心

    用户登录并访问资源 配置用户门户会话的持续时间 用户组管理 创建用户组 用户组添加/移除用户 账号权限管理 创建权限集 账号关联用户/组和权限集 启用和配置访问控制属性 为ABAC创建权限策略 身份源管理 更改身份源 自定义用户门户URL 配置外部身份提供商 因素认证 启用MFA 注册MFA设备

    来自:帮助中心

    查看更多 →

  • 分子属性预测

    分子属性预测 基于盘古药物分子大模型,预测化合物ADMET相关的80多种成药属性,有些属性的预测值会给出置信区间,更好地辅助分子设计。 单击“分子属性预测”功能卡片,进入配置页面。 图1 小分子配置页面 在配置页面输入分子信息,及配置相关参数。 输入方式:支持绘制分子、选择文件、手动输入。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了