表格存储服务 CloudTable

表格存储服务(CloudTable)是基于Apache HBase提供的全托管NoSQL服务,集成时序、时空数据存储特性,可提供千万级TPS以及毫秒级随机读写能力。可被广泛应用于物联网、车联网、金融、智慧城市、气象等行业。

 
 

    深度学习 多变量时序预测 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 时序预测

    配置一条或者多条节假日或者重大事件的开始时间、结束时间及其相应的标记,可单击“标记”右侧的问号,查看其含义。 时空预测:如果选择“时空预测”,“目标列”支持设置为列。 平台性能:与创建特征工程时,即2中设置的JupyterLab平台规格大小有关,如果规格大,可以选择“优”或“良

    来自:帮助中心

    查看更多 →

  • 时序预测学件

    时序预测学件 创建项目 时序预测 父主题: 学件开发指南

    来自:帮助中心

    查看更多 →

  • 使用时序预测算法实现访问流量预测

    使用时序预测算法实现访问流量预测 本案例介绍使用AI Gallery中预置的时序预测算法实现访问流量预测。 准备工作 已注册华为云帐号,且在使用ModelArts前检查帐号状态,帐号不能处于欠费或冻结状态。 当前帐号已完成访问授权的配置。如未完成,请参考使用委托授权。针对之前使用

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现预测分析

    使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 预测类数据集格式要求

    回归分类数据:回归分类数据包含多种预测因子(特征),用于预测连续变量的值。数据集中的多个特征变量帮助预测目标变量,而目标变量为连续数值,非离散类别。与时序数据不同,回归分类数据不要求数据具有时间顺序。 具体格式要求详见表1。 表1 预测类数据集格式要求 文件内容 文件格式 文件样例 时序 csv 数据为结构化数据

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 时序分析

    时序分析 时序分析简介 资产时序探索 设置时间窗 时序洞察 收藏夹 自动刷新

    来自:帮助中心

    查看更多 →

  • 时序洞察

    时序洞察 预览列表展示 原始数据查看 图表探索分析 父主题: 时序分析

    来自:帮助中心

    查看更多 →

  • 时序路径

    时序路径 从一个点出发搜索到目标节点的时序路径(时序路径满足动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边的经过时间),在画布上呈现点、边随时间递增(或非减)的变化趋势。 该功能可以通过strategy参数调整搜索的是距离最短的时序路径,还是尽早到达目标节点的时序路径。具体操作步骤如下:

    来自:帮助中心

    查看更多 →

  • 创建项目

    创建项目 时序预测学件,目前封装在模型训练服务的JupyterLab平台中。可通过在项目中创建JupyterLab环境,体验时序预测学件服务。 时序预测学件支持同时对指标进行预测。 在模型训练服务首页,单击界面左上角的“创建项目”图标。 弹出“创建项目”对话框。请根据实际情况,配置如下参数:

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 数据配置 训练数据 选择数据集中已发布的数据集,这里数据集需为再分析类型数据,同时需要完成加工作业,加工时需选择气象预处理算子。 训练集 选择训练数据中的部分时间数据,训练数据集尽可能一些。 验证集 选择

    来自:帮助中心

    查看更多 →

  • 时序预测-time_series_v2算法部署在线服务预测报错

    时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 资产时序探索

    资产时序探索 选择根资产 选择资产 选择属性 父主题: 时序分析

    来自:帮助中心

    查看更多 →

  • 时序分析简介

    时序分析简介 概念简介 功能简介 父主题: 时序分析

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 服务预测

    服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout

    来自:帮助中心

    查看更多 →

  • CPI预测

    提交成功后,可以在“作业中心”查看执行结果。 查看对多运行结果。 如果是多受体对配体,打开作业结果页面可以看到结合能二维矩阵,支持分别按照靶点和小分子进行排序。 图4 查看结果(1) 查看一对多运行结果。 单击受体结合能框,跳转到单受体对配体的结果表页面,可以下载全量及单条CPI预测结果。 如果需要下载

    来自:帮助中心

    查看更多 →

  • 实时预测

    实时预测 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。 创建实时预测作业 执行实时预测作业 删除实时预测作业 父主题: 联邦预测作业

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了