sar影像融合深度学习 更多内容
  • 功能介绍

    集成主流深度学习框架,包括PyTorch,TensorFlow,Jittor,PaddlePaddle等,内置经典网络结构并支持用户自定义上传网络,同时,针对遥感影像多尺度、多通道、多载荷、多语义等特征,内置遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 方案概述

    依托智慧教室的建设,为学校构建下一代数字学习环境,促进教学对象、教学内容、教学活动、教学工具、教学空间有机融合。 通过深度融合的软硬件集成,用一个应用满足教学一体化、管理一体化的需求,满足多场景教学的实际使用。依靠高清4K屏、收扩音系统,升级本地学生视听学习体验的同时让远端学生也都能看得清

    来自:帮助中心

    查看更多 →

  • 功能介绍

    北京市1985年-2017年城镇化进度 支持多种经典机器学习分类算法,如K-Means、随机森林、正态贝叶斯、支持向量机、期望最大EM等,实现遥感影像快速分类 图6 基于K-Means算法的分类结果图 图7 基于正态贝叶斯的分类结果图 支持调用PIE-Engine AI平台的丰富深度学习模型进行实时解译 图8 调用PIE-Engine

    来自:帮助中心

    查看更多 →

  • 方案概述

    者效益最大化; 数据缺乏安全性高、维护成本低的云资源支持业务场景应用。 方案架构 图1 架构图 方案优势 落地性强:自主研发目标识别和深度学习融合的耘镜平台,目前已服务全国超过4亿亩耕地 AI能力强:方案结合华为云EI服务,地物自动识别效率超过95%,作物长势监测8天自动化更新,

    来自:帮助中心

    查看更多 →

  • 融合验证

    条数据进行融合。 图1 知识融合示例 配置知识融合后, 知识图谱服务 会对数据按配置规则进行知识融合。但是融合结果不一定完全正确,需要经过融合验证,判断融合的数据是否描述的是同一个实体或概念。 前提条件 已创建完 知识图谱 ,即完成图谱创建,并在配置知识融合步骤2打开知识融合开关配置知识融合的信息。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 产品概述

    可信数据融合和协同。 产品架构 产品架构如图1所示。 图1 产品架构 空间管理 邀请云租户作为数据提供方,动态构建 可信计算 空间,实现空间内严格可控的数据使用和监管。 数据融合分析 支持对接多个数据参与方的主流数据存储系统,为数据消费者实现多方数据的SQL Join等融合分析,各方

    来自:帮助中心

    查看更多 →

  • 融合与发布

    图1 建模方式融合1 图2 建模方式融合2 图3 建模方式融合3 自定义 sql 融合 选择来源表和目标表,目标表是基础层的表,要确保来源表的表结构表名称和目标表一一对应,填写融合的 sql 语句,保存完之后在列表页启动作业。 交换任务成功运行后,系统将根据融合配置将于数仓基础层用张业务表合并为一张宽表。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据

    来自:帮助中心

    查看更多 →

  • 产品功能

    等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 多方融合分析 对接多种主流数据存储系统,为数据消费者实现多方数据的融合分析,参与方敏感数据能够在聚合计算节点中实现安全计算。 多方联邦训练 对接主流深度学习框架实现横向和纵向联邦建模,支持基于SMPC(如不经意传输、同态加密等)的多方样本对齐和训练模型保护。

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成熟

    来自:帮助中心

    查看更多 →

  • 什么是云地图服务

    高效率:外业数据一次采集生成多种AR成果数据,应用到虚实融合、定位、导航等多个场景,极大地提升数据采集和地图生产效率。 全自动:全自动化AR地图生产,用户只需上传全景相机数据,一键启动和完成地图生产。 高逼真:通过AI深度估计和3D识别等技术,准确理解物理世界,虚实融合,实现逼真的沉浸式体现效果。 产品功能

    来自:帮助中心

    查看更多 →

  • 应用场景说明

    在ISDP系统的采集功能使用过程中会产生大量照片与视频,这些影像数据会作为后续人工智能AI模型的训练数据集,影像数据包含图片与视频。 在ISDP中,检查单、任务单、子任务单以及问题单都独立具备影像采集的能力。 在形成可用的训练数据前,需要对这些影像数据进行正负样本的手工分类,符合标准的影像作为模型训练中的正样本数据

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 配置知识融合

    个人,因此需要对这两条数据进行融合。 图1 知识融合示例 知识融合过程请见图2,融合过程说明请见表1。 图2 知识融合 表1 知识融合说明 融合过程 过程说明 初步筛选 知识融合需要初步筛选与融合标识符相似的实体数据。 判断属性相似度 初步筛选与融合标识符相似的数据后,需要配置相

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了