使用Tensorflow训练神经网络 更多内容
  • 使用Tensorflow训练神经网络

    使用Tensorflow训练神经网络 应用场景 当前主流的大数据、AI训练和推理等应用(如TensorflowCaffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    Tensorflow训练 Kubeflow部署成功后,使用ps-worker的模式来进行Tensorflow训练就变得非常容易。本节介绍一个Kubeflow官方的Tensorflow训练范例,您可参考TensorFlow Training (TFJob)获取更详细的信息。 创建MNIST示例

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    4-基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • CCI

    Dockerfile参数在云容器实例中如何使用 使用Tensorflow训练神经网络 使用多种方法创建工作负载 05 进阶 云容器实例提供了定制的kubectl工具,支持使用Kubectl命令行创建负载等资源。 二次开发 Namespace和Network 使用 Service 和 Ingress

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    Server和ModelArts Lite Cluster使用的都是专属资源池。 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    华为云EI概览 介绍华为AI的认知与EI的由来,并详细介绍华为云EI企业智能 Python编程基础实验 介绍Python编程基础实验相关知识 TensorFlow介绍 介绍TensorFlow的框架,TensorFlow2.0的基础与高阶操作,TensorFlow2.0中的Keras高层接口及TensorFlow2

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Tensorflow

    cce-obs-tensorflow persistentVolumeClaim: claimName: cce-obs-tensorflow containers: - name: container-0

    来自:帮助中心

    查看更多 →

  • 分布式Tensorflow无法使用“tf.variable”

    分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    意识别训练代码中是否有“/home/work”的硬编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    ModelArts中预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表 引擎类型 版本名称 PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 TensorFlow tensorflow_2.1.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 创建Tensorboard

    创建Tensorboard TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练使用到的数据信息。TensorBoard当前只支持基于TensorFlow引擎训练作业。同一个用户的多个项目,创建Tensorboard任务数

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    际局点支持的镜像和资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。 TensorFlow引擎训练脚本中添加Summary代码,具体方式请参见TensorFlow官方网站。 注意事项 运行中的

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    从0制作 自定义镜像 用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用AI引擎Tensorflow训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86

    来自:帮助中心

    查看更多 →

  • moxing.tensorflow是否包含整个TensorFlow,如何对生成的checkpoint进行本地Fine Tune?

    使用MoXing代码,2代表非MoXing代码。 图1 代码示例 处理方法 Fine Tune就是用别人训练好的模型,加上自己的数据,来训练新的模型。相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入自己的分类中。 由于一般新训练模型准确率都会从很低的值开始慢慢上升,但是Fine

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    IMAGE_MINDSPORE_ASCEND_310P_DESC Ascend_snt3p 是 是 训练作业 创建训练作业时,训练支持的AI引擎及对应版本如下所示。 预置引擎命名格式如下: <训练引擎名称_版本号>-[cpu | <cuda_版本号 | cann_版本号 >]-<py_版本号>-<操作系统名称_版本号>-<

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    CPU运筹优化求解器开发基础镜像,预置cylp,cbcpy,ortools及cplex CPU 是 是 训练作业 创建训练作业时,训练支持的AI引擎及对应版本如下所示。 预置引擎命名格式如下: <训练引擎名称_版本号>-[cpu | <cuda_版本号 | cann_版本号 >]-<py_版本号>-<操作系统名称_版本号>-<

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    engine_name String 引擎规格的名称。如“Caffe”。 engine_version String 引擎规格的版本。对一个引擎名称,有多个版本的引擎,如使用python2.7的"Caffe-1.0.0-python2.7"等。 v1_compatible Boolean 是否为v1兼容模式。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了