AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    人工神经网络模式识别 更多内容
  • 人工服务类商品服务监管

    人工服务类商品服务监管 当人工服务类商品成功售出后,商家可以在卖家中心“交付管理>服务监管”查看用户提交的需求,并在服务交付完成后同步上传交付验收文档。 注意事项 人工服务交付方式下的商品分为标准类(适用于环境配置、数据迁移等服务类商品)和建站类两种,由于每种商品服务特性不同,所

    来自:帮助中心

    查看更多 →

  • 人工服务类商品服务监管

    人工服务类商品服务监管 当人工服务类商品成功售出后,服务商可以在卖家中心“交易管理>服务监管”查看服务状态及操作日志,服务交付完成后,反馈服务已完成。 注意事项 服务监管流程未完成的订单,订单状态为“处理中”,待用户确认验收后3个小时内,订单状态会同步为“已完成”,代表订单全流程已完成。

    来自:帮助中心

    查看更多 →

  • 功能特性

    未知威胁、暴力破解七大IAM高危场景进行智能检测。通过SVM、随机森林、神经网络等算法实现对隧道 域名 、DGA域名以及异常行为的智能检测。 AI引擎检测保持模型对真实数据的学习,保证数据对模型的反复验证和人工审查,精准制定预过滤和后处理逻辑,结合先验知识,模型达成零误报。同时,以阶

    来自:帮助中心

    查看更多 →

  • 常用概念

    称之为虚拟形象、数字虚拟人、虚拟数字人等。数字人的核心技术主要包括计算机视觉、计算机图形学、动作捕捉和驱动、图像渲染和人工智能等。 服务型数字人:利用深度神经网络进行图像合成、高度拟真的虚拟人。 具备如下特点: 2D模型,通过拍摄真人视频训练生成 无表情&骨骼数据 只能由AI驱动

    来自:帮助中心

    查看更多 →

  • 查看人工质检结果并申请复议

    查看人工质检结果并申请复议 申请人工质检复议 选择“质检 > 质检结果查询”。 根据选择不同的查询条件,单击“查询”,获得查询结果,单击“重置”置空已有查询条件。 单击“详情”操作可以跳转至人工质检页面,获得当前质检分数明细。 单击“申请复议”,填写复议理由,提交复议流程。 图1

    来自:帮助中心

    查看更多 →

  • 发布人工服务类商品操作指导

    发布人工服务类商品操作指导 上架流程 操作步骤 进入卖家中心页面。 点击左侧导航的“商品管理>我的商品”。 点击页面右上方的“发布商品”。 进入“发布商品”页面。 在页面上方的商品接入中选择“人工服务”。根据页面提示信息,填写“商品名称”、“商品版本”,上传“商品 LOG O”,选择

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理 指按某种策略由已知判断推出新判断的思维过程。人工智能领域下,由机器模拟人类智能,使用构建的神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果的在线服务(Web Service)。 批量推理

    来自:帮助中心

    查看更多 →

  • 策略参数说明

    Int 分解后的特征向量的长度。取值范围[1,100],默认10。 神经网络结构 (architecture) 是 List[Int] 神经网络的层数与每一层神经元节点个数。每一层神经元节点数不大于5000,神经网络层数不大于10。默认为400,400,400。 神经元值保留概率

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特

    来自:帮助中心

    查看更多 →

  • 排序策略

    分解后的表示特征的向量的长度。默认10。 神经网络结构 神经网络的层数与每一层的神经元节点个数。默认400,400,400。 激活函数 神经网络中的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程中以该概率保留神经元的值。默认0

    来自:帮助中心

    查看更多 →

  • 大数据分析

    大数据分析 人工智能应用 场景概述 2016年AlphaGo横空出世,4:1战胜李世石,17年又以3:0战胜世界围棋冠军柯洁,此后三年,星际,Dota2,德州扑克等均涌现出超高水平AI。人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 概要

    概要 本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    分解后的表示特征的向量的长度。默认10。 神经网络结构 神经网络的层数与每一层的神经元节点个数。默认400,400,400。 激活函数 神经网络中的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程中以该概率保留神经元的值。默认0

    来自:帮助中心

    查看更多 →

  • 产品优势

    。 挖掘数据特性,创新算法架构 在算法方面,分析DNS域名格式特点,创新的结合BERT思想构造三通道CNN模型,相比传统直接将域名输入到神经网络的方法具有更好的检测效果,在业界内较先采用。 多模型协同检测,准确识别威胁 威胁检测服务 除威胁情报和规则基线检测外,还提供4类基于AI智

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检测,准确识别图像中包含的影视明星、网红人物等。 主体识别 利用后台算法来检测图像中的主体内容,识别主体内容的坐标信息。 图2 主体识别示例图 翻拍识别 利用深度神经网络算法判断条形码图片为原始拍摄,还是经过二次

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • Lite Server使用流程

    xPU泛指GPU和NPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练和推理。 NPU,即神经网络处理器,是专门为加速神经网络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。 密钥对 弹性裸金属支持SSH密钥对的方式进行登录,用户无需输

    来自:帮助中心

    查看更多 →

  • 查询对话历史列表

    "knowledge_repo_id" : "176e63a2-73bd-415c-aab2-f688030855e3", "chat_title" : "人工智能会取代人类吗", "create_date_time" : "1695195832442", "is_del" : 0

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了