GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU 推理加速怎么样 更多内容
  • 实例类型

    Enhanced Memory 计算加速场景 GPU计算加速型 p Parallel GPU图像加速型 g Graphic GPU推理加速型 pi Parallel Inference FPGA加速型 fp FPGA Performance AI推理加速型 ai Ascend Inference

    来自:帮助中心

    查看更多 →

  • 云端推理

    请根据实际情况设置“版本”、“计算节点规格”等信息,或保持默认值也可以,单击“确定”。 等待系统发布推理服务,大约需要10分钟。发布成功后,模型包所在行的图标更新为。 单击模型包右侧的图标,进入推理服务快速验证页面。 在左侧的“验证消息”区域,输入json格式的验证数据,如下所示。 {

    来自:帮助中心

    查看更多 →

  • 模型推理

    模型推理 将数据输入模型进行推理推理结束后将推理结果返回。 接口调用 virtual HiLensEC hilens::Model::Infer(const InferDataVec & inputs, InferDataVec & outputs) 参数说明 表1 参数说明 参数名

    来自:帮助中心

    查看更多 →

  • 模型推理

    模型推理 模型初始化成功后,调用infer接口进行模型推理。灌入一组数据,并得到推理结果。输入数据的类型不是uint8或float32数组组成的list将会抛出一个ValueError。 接口调用 hilens.Model.infer(inputs) 参数说明 表1 参数说明 参数名

    来自:帮助中心

    查看更多 →

  • Standard资源管理

    专属资源池支持自定义物理节点运行环境相关的能力,例如GPU/Ascend驱动的自助升级,而公共资源池暂不支持。 专属资源池有什么能力? 新版专属资源池是一个全面的技术和产品的改进,主要能力提升如下: 专属资源池类型归一:不再区分训练、推理专属资源池。如果业务允许,您可以在一个专属资源池中同时跑训练和推理的Worklo

    来自:帮助中心

    查看更多 →

  • 监控GPU资源指标

    cce_gpu_memory_used GPUGPU显存使用量 cce_gpu_memory_total GPUGPU显存总量 cce_gpu_memory_free GPUGPU显存空闲量 cce_gpu_bar1_memory_used GPUGPU bar1

    来自:帮助中心

    查看更多 →

  • GPU设备显示异常

    是,该驱动版本与镜像可能存在兼容性问题,建议更换驱动版本,操作指导,请参考安装GPU驱动。 否,请执行下一步。 请尝试重启 云服务器 ,再执行nvidia-smi查看GPU使用情况,确认是否正常。 如果问题依然存在,请联系客服。 父主题: GPU驱动故障

    来自:帮助中心

    查看更多 →

  • 异步推理

    在“模型仓库”页面单击导入模型包对应的“”,发布推理服务,如图7所示。 图7 发布推理服务 在“发布推理服务”页面配置“计算节点规格”等信息,单击“确定”,如图8所示。 图8 配置推理服务发布信息 单击推理服务菜单栏的“推理服务”,查看模型包推理服务部署进展,如图9所示。 图9 推理服务部署 待推理服务部署完成,左

    来自:帮助中心

    查看更多 →

  • 开发推理

    py”中。当学件模型打包发布成在线推理服务时,可以使用推理代码,完成快速在线推理验证。 单击“测试模型”左下方的“开发推理”。 等待推理代码生成完成后,可在左侧目录树中,看到生成的推理文件“learnware_predict.py”。 用户可以根据实际情况,编辑修改推理文件中的代码。 父主题:

    来自:帮助中心

    查看更多 →

  • 推理部署

    推理部署 模型管理 服务部署 服务预测

    来自:帮助中心

    查看更多 →

  • 配置边缘节点环境

    硬盘 >= 1GB GPU(可选) 同一个边缘节点上的GPU型号必须相同。 说明: 当前支持Nvidia Tesla系列P4、P40、T4等型号GPU。 含有GPU硬件的机器,作为边缘节点的时候可以不使用GPU。 如果边缘节点使用GPU,您需要在纳管前安装GPU驱动。 目前只有使用

    来自:帮助中心

    查看更多 →

  • 配置边缘节点环境

    硬盘 >= 1GB GPU(可选) 同一个边缘节点上的GPU型号必须相同。 说明: 当前支持Nvidia Tesla系列P4、P40、T4等型号GPU。 含有GPU硬件的机器,作为边缘节点的时候可以不使用GPU。 如果边缘节点使用GPU,您需要在纳管前安装GPU驱动。 目前只有使用

    来自:帮助中心

    查看更多 →

  • 应用场景

    当前主流的大数据、AI训练和推理等应用(如Tensorflow、Caffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。 云容器实例提供如下特性,能够很好的支持这类场景。 计算加速:提供GPU/Ascend等异构芯片加速能力

    来自:帮助中心

    查看更多 →

  • 推理服务测试

    推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    参数类型 描述 model 是 无 Str 通过OpenAI服务API接口启动服务时,推理请求必须填写此参数。取值必须和启动推理服务时的model ${model_path}参数保持一致。 通过vLLM服务API接口启动服务时,推理请求不涉及此参数。 prompt 是 - Str 请求输入的问题。

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    参数类型 描述 model 是 无 Str 通过OpenAI服务API接口启动服务时,推理请求必须填写此参数。取值必须和启动推理服务时的model ${model_path}参数保持一致。 通过vLLM服务API接口启动服务时,推理请求不涉及此参数。 prompt 是 - Str 请求输入的问题。

    来自:帮助中心

    查看更多 →

  • Standard支持的AI框架

    1-cudnn7-ubuntu18.04 GPU算法开发和训练基础镜像,预置AI引擎MindSpore-GPU GPU 是 是 rlstudio1.0.0-ray1.3.0-cuda10.1-ubuntu18.04 CPU、GPU强化学习算法开发和训练基础镜像,预置AI引擎 CPU/GPU 是 是 mindquantum0

    来自:帮助中心

    查看更多 →

  • Lite功能介绍

    已在大模型训练推理、自动驾驶、AIGC、 内容审核 等领域广泛得到应用。 ModelArts Lite又分以下2种形态: ModelArts Lite Server提供不同型号的xPU裸金属 服务器 ,您可以通过弹性公网IP进行访问,在给定的操作系统镜像上可以自行安装加速卡相关的驱动和其

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性云服务器GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • 部署在线服务出现报错No CUDA runtime is found

    确认该cuda版本与您安装的mmcv版本是否匹配。 部署时是否需要使用GPU,取决于的模型需要用到CPU还是GPU,以及推理脚本如何编写。 父主题: 服务部署

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    应用场景 当前主流的大数据、AI训练和推理等应用(如Tensorflow、Caffe)均采用容器化方式运行,并需要大量GPU、高性能网络和存储等硬件加速能力,并且都是任务型计算,需要快速申请大量资源,计算任务完成后快速释放。本文将演示在云容器实例中创建GPU类型的负载,以tensorfl

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了