paddlepaddle和tensorflow 更多内容
  • 在Notebook中添加自定义IPython Kernel

    在Notebook中添加自定义IPython Kernel 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    开发环境预置镜像分为X86ARM两类: 表1 X86预置镜像列表 引擎类型 镜像名称 PyTorch pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 pytorch1.4-cuda10

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果使用其他引擎,请将命令中“TensorFlow-1.8”替换为其他引擎的名称及其版本号。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入预处理训练数据集 参考TensorFlow官网的教程,创建一个简单的图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    tag命令给上传镜像打标签。 #regiondomain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/tensorflow:2

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库?

    序包等多种环境,包括TensorFlow、MindSpore、PyTorchSpark等。您也可以使用pip install在Notobook或Terminal中安装外部库。 在Notebook中安装 例如,通过JupyterLab在“TensorFlow-1.8”的环境中安装Shapely。

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    Ascend+ARM算法开发训练基础镜像,AI引擎预置MindSpore Ascend 是 是 tensorflow1.15-cann5.1.0-py3.7-euler2.8.3 Ascend+ARM算法开发训练基础镜像,AI引擎预置TensorFlow Ascend 是 是 mindspore1

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    希望成为人工智能工程师的人员 希望了解华为人工智能产品人工智能云服务的使用、管理维护的人员 培训目标 完成该培训后,您将系统理解并掌握Python编程,人工智能领域的必备数学知识,应用广泛的开源机器学习/深度学习框架TensorFlow的基础编程方法,深度学习的预备知识深度学习概览,华为云EI概览,

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlowJupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建Tensorboard

    创建Tensorboard TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard当前只支持基于TensorFlow引擎的训练作业。同一个用户的多个项目,创建Tensorboard任

    来自:帮助中心

    查看更多 →

  • 训练输出的日志只保留3位有效数字,是否支持更改loss值?

    INFO:tensorflow:global_step/sec: 0.382191 INFO:tensorflow:step: 81600(global step: 81600) sample/sec: 12.098 loss: 0.000 INFO:tensorflow:global_step/sec:

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    旧版训练迁移至新版训练需要注意哪些问题? 新版训练旧版训练的差异主要体现在以下3点: 新旧版创建训练作业方式差异 新旧版训练代码适配的差异 新旧版训练预置引擎差异 新旧版创建训练作业方式差异 旧版训练支持使用“算法管理”(包含已保存的算法订阅的算法)、“常用框架”、“自定义”(即 自定义镜像 )方式创建训练作业。

    来自:帮助中心

    查看更多 →

  • 查询作业引擎规格

    查询作业引擎规格 功能介绍 查看指定作业的引擎类型版本。 创建训练作业预测作业需要指定引擎规格。 URI GET /v1/{project_id}/job/ai-engines 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String

    来自:帮助中心

    查看更多 →

  • 模板管理

    些Case还需要使用Java、Tomcat。 包括如下缺点: 对模型包格式有约束。虽然云端推理框架对模型训练服务发布的推理服务,进行了适配封装,例如:预置若干必须的文件。还是对开发者增加了隐含约束,比如:流量预测服务曾遇到模型被覆盖的问题。 对入口文件“custom_service

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    架,构建于TensorFlowPyTorchMXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,具体的AI引擎解耦,在M

    来自:帮助中心

    查看更多 →

  • 保存模型时出现Unable to connect to endpoint错误

    对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckptsummary的读取写入可以通过本地缓存的方式中转解决: import moxing.tensorflow as mox mox.cache() 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

  • 导入/转换本地开发模型

    om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界Tensorflow算子边界。 前提条件 已在本地开发模型。本地自定义的训练模型,非“.om”格式的模型上传文件包含caffe模型文件“.caffemodel”“.prototxt”配置文件“

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    所示。 表1 ModelArts训练基础镜像列表 引擎类型 版本名称 PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 TensorFlow tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18

    来自:帮助中心

    查看更多 →

  • 配置pip源后安装组件失败

    install tensorflow”为例,tensorflow的simple页面为https://mirrors.huaweicloud.com/repository/pypi/simple/tensorflow/。 在页面中可以查看到组件“tensorflow-2.0.0rc

    来自:帮助中心

    查看更多 →

  • 推理专属预置镜像列表

    myhuaweicloud.com/aip/tensorflow_2_6:tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64-20220524162601-50d6a18 表2 PyTorch AI引擎版本 支持的运行环境 镜像名称 URI

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了