AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习训练神经网络概论 更多内容
  • 产品术语

    指可在公司外部公开发布的信息,不属于保密信息。 X 训练训练集是指在机器学习和模式识别等领域中,用来估计模型的数据集。 消费侧权限 消费侧权限是指一个租户在数据资产管理服务中除了Data Operation Engineer或Data Owner角色的其他用户及其他租户下的所有用户,对于数据集服务具有浏览、查询、订阅和下载已发布数据集的权限。

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 创建一个问答机器人

    查看问答机器人 购买的机器人,会显示在您对话机器服务控制台中,智能问答机器人的列表里。在问答机器人列表右上角,您可以选择机器人状态筛选您购买的机器人,或者输入名称关键字,单击进行查找。对于包年包月的机器人,可以进行机器人管理、续费、规格修改。 机器人管理:进入机器人配置界面,

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 训练模型

    练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 功能介绍

    系统经过处理,生成语音对应的文字,支持的语言包含中文普通话、方言以及英语。方言当前支持四川话、粤语和上海话。 产品优势 高识别率 基于深度学习技术,对特定领域场景的 语音识别 进行优化,识别率达到业界领先。 前沿技术 使用工业界成熟的算法,结合学术界最新研究成果,为企业提供独特竞争力优势。

    来自:帮助中心

    查看更多 →

  • 查询联邦预测作业列表

    联合SQL分析,HFL.横向联邦学习,VFL.纵向联邦学习,PREDICT.预测 creatorName String 创建人名称,最大值128 create_time String 创建时间。 hfl_type String fl作业类型枚举。1.TRAIN训练,2.EVALUATE评估

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期 无需AI技能,支持模型自动生成,业务人员快速使用

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。 表4 LoRA参数配置说明 参数英文名 参数中文名 参数说明 lora_rank 秩 LoRA微调中的秩。

    来自:帮助中心

    查看更多 →

  • 预训练

    68长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。

    来自:帮助中心

    查看更多 →

  • 增量模型训练

    增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建工程 创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    examples/deepspeed/ds_z2_config.json ZeRO-3,配置以下参数 deepspeed: examples/deepspeed/ds_z3_config.json 否,默认选用Accelerate加速深度学习训练框架,注释掉deepspeed参数。 是否使用固定句长 是,配置以下参数

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    启动TensorBoard 在开发环境的JupyterLab中打开TensorBoard。 图1 JupyterLab中打开TensorBoard 在JupyterLab左侧导航创建名为“summary”的文件夹,将数据上传到“/home/ma-user/work/summary”路径。注:

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    decay)的机制,可以有效地防止过拟合(overfitting)的问题。 学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习率和衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。

    来自:帮助中心

    查看更多 →

  • 训练服务

    训练服务 训练服务简介 算法管理 训练任务 模型评测 编译管理 推理服务

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    68长度,则推荐增加CP值(CP ≥ 2)。对应训练参数 context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了