华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习模型新数据集 更多内容
  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 创建声音分类项目

    ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。 在您需要的自动学习项目列

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个的AI应用版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。

    来自:帮助中心

    查看更多 →

  • 产品功能

    因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算节点 数据

    来自:帮助中心

    查看更多 →

  • 导出ModelArts数据集中的数据为新数据集

    息,然后单击“确定”,开始执行导出操作。 “数据来源”:选择数据集。 “名称”:数据集名称。 “保存路径”:表示数据集的输入路径,即当前数据导出后存储的OBS路径。 “输出路径”:表示数据集的输出路径,即数据集在完成标注后输出的路径。“输出路径”不能与“保存路径”为同一

    来自:帮助中心

    查看更多 →

  • 盘古大模型套件使用流程

    开通盘古大模型服务 开通大模型的文本补全、多轮对话能力。 开通盘古大模型服务 配置授权/创建子用户 配置盘古访问OBS服务权限,多用户使用平台情况下需要创建子用户。 配置盘古访问授权 创建子用户并授权使用盘古 准备训练数据 创建一个数据集 创建一个数据集,用来管理上传至平台的训练或者评测数据。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 模型训练

    后生成的四份数据集。 当前数据集目录中展示的 数据实例 数量比数据集菜单页面多,属于正常,无需关注。 图1 数据集 单击“训练”,进入“训练任务配置”界面,配置训练任务,配置效果如图2所示。 参数配置说明,如下所示,其余参数保持默认值即可。 AI引擎:AI算法运行平台。从第一个下拉

    来自:帮助中心

    查看更多 →

  • 数据集

    KPI_60mins:KPI 60分钟数据集 TPC-iSPS11_60:KPI异常检测数据集 amazon:迁移学习Office-31 A(Amazon)数据集 dslr:迁移学习Office-31 D(DSLR)数据集 webcam:迁移学习Office-31 W(Webcam)数据集 caltech:迁移学习Caltech-256数据集

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    ,方便后续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • GS

    ,方便后续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成数据集的方式增加数据量。

    来自:帮助中心

    查看更多 →

  • 产品术语

    训练集是指在机器学习和模式识别等领域中,用来估计模型数据集。 消费侧权限 消费侧权限是指一个租户在数据资产管理服务中除了Data Operation Engineer或Data Owner角色的其他用户及其他租户下的所有用户,对于数据集服务具有浏览、查询、订阅和下载已发布数据集的权限。

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    创建训练服务 新建训练服务 训练任务需要基于已经成功打包的训练模型去创建,并选择的训练数据集、测试数据集和标签列进行模型训练。 单击“创建”,弹出“创建训练”对话框。 配置训练服务参数,如新建算法参数说明所示。 表1 参数说明 参数名称 参数说明 请选择模型训练方式 模型训练方式,包含如下选项:

    来自:帮助中心

    查看更多 →

  • 产品术语

    AML 自动化机器学习。提供业务人员可以直接使用的各类机器学习应用服务,用户仅需提供训练数据和业务目标即可得到精准的挖掘结果,所有服务通过rest接口实现,可以方便的集成到各业务系统中。同时AML支持定制人员开发的插件服务,支持将已有的业务经验集成到AML中,和预置的分析服务共同影响挖掘结果。

    来自:帮助中心

    查看更多 →

  • 预训练

    cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用E CS 中构建镜像构建的镜像时,训练作业启动命令中输入:

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    cd /home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 如果镜像使用ECS中构建镜像构建的镜像时,训练作业启动命令中输入:

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    ,方便后续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。

    来自:帮助中心

    查看更多 →

  • 产品优势

    现出色,它还能通过少量的数据快速迁移到的领域或场景。这种迁移能力使模型能够在面对挑战时迅速调整和优化,提供适应新领域的服务。 通过微调技术,盘古大模型能够在保持原有优势的同时,融入新领域的特征和规律,实现对新任务的快速适应。这种能力极大地扩展了模型的应用范围,使其在更广泛的

    来自:帮助中心

    查看更多 →

  • 训练型横向联邦作业流程

    训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业 配置作业的执行脚本,训练模型文件。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了