AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习模型新数据集 更多内容
  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 修订记录

    2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。 删除模型管理界面的云端推理入口,更新云端推理框架。 2020-08-17 根据最新的模型训练服务,更新“模型训练服务简介”章节描述。

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    数据集是模型微调的基础,首先需要创建用于模型训练的数据集。 创建模型微调流水线 通过模型微调任务进行模型训练,微调任务结束后,将生成改进后的模型。 部署模型 模型部署是通过为基座模型(即原模型)和微调后的模型创建用于预测的模型服务的过程实现。 测试模型调优效果 在线测试微调后的模型(输入问题发起请求获取数据分

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案架构图 该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据集及ModelArts算法、推理脚本、配置文件、模型数据。另一个用于存储数据集数据集预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 Fun

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案架构图 该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据集及ModelArts算法、推理脚本、配置文件、模型数据;另一个用于存储数据集数据集预测结果。 使用AI开发平台ModelArts,用于机器学习模型训练,预测汽车价值评估结果。 使用函数工作流 F

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 最新动态

    纵向联邦作业中支持对两方数据集进行样本对齐,在不泄露数据隐私的情况下计算出双方共有的数据,并将共有的数据作为后续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本

    来自:帮助中心

    查看更多 →

  • 修改数据集(新)

    修改数据集) 修改数据集的基本信息 修改数据集的图片 修改数据集的权限 父主题: 管理数据集

    来自:帮助中心

    查看更多 →

  • 修改数据集(新)

    修改数据集) 修改数据集的信息 修改数据集的图片 修改数据集的权限 父主题: 管理数据集

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    对项目的简要描述。 “数据集” 可在右侧下拉框选择已有数据集,或单击“创建数据集”前往新建数据集。 已有数据集:在“数据集”右侧的下拉框中选择,仅展示同类型的数据集供选择。 创建数据集:前往创建数据集页面创建一个数据集。具体操作请参考创建ModelArts数据集。 “标签列” 可自行选择您需要预测的列名。

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习、深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

  • 产品术语

    B 标签列 模型训练输出的预测值,对应数据集的一个特征列。例如鸢尾花分类建模数据集提供了五列数据:花瓣的长度和宽度、花萼的长度和宽度、鸢尾花种类。其中,鸢尾花种类就是标签列。 C 超参 模型外部的参数,必须用户手动配置和调整,可用于帮助估算模型参数值。 M 模型包 将模型训练生成的

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 若镜像使用E CS 中构建镜像(二选一)构建的镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    训练LOSS 训练阶段的LOSS变化,模型在日志里用LOSS关键词记录数据,按照训练迭代周期记录LOSS值。 微调产物说明 模型微调完成后,会得到一个模型,即微调产物。 在微调大师页面,单击操作列的“查看模型”跳转到微调获得的模型的详情页面。选择“模型文件”页签可以查看微调产物。各文件说明请参见表3。

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对数据集进行训练,得到训练结果。 新建超参优化服务:通过训练结果对比,为已创建的训练工程选择一组最优超参组合。 系统还支持打包训练模型,用于

    来自:帮助中心

    查看更多 →

  • 创建图像分类项目

    可在右侧下拉框选择已有数据集,或单击“创建数据集”前往新建数据集。 已有数据集:在“数据集”右侧的下拉框中选择,仅展示同类型的数据集供选择。 创建数据集:前往创建数据集页面创建一个数据集。具体操作请参考创建ModelArts数据集。 “输出路径” 选择自动学习数据输出的统一OBS路径。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了