测试模型深度学习 更多内容
  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • 模型训练

    重新选择使用的模型,或关闭特征搜索。 其中“排行榜”展示所有训练出的模型列表,支持对模型进行如下操作: 单击模型所在行对应“操作”列的“详情”,查看模型超参取值和模型评分结果。 单击模型所在行对应“操作”列的“预测”,在新增的“AutoML模型预测”内容中,选择测试数据集test

    来自:帮助中心

    查看更多 →

  • 部署物体检测服务

    成功”,至此,已将模型部署为在线服务。 服务测试 服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习物体检测项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“服务

    来自:帮助中心

    查看更多 →

  • ModelArts

    使用常用框架的元模型创建AI应用 针对使用常用框架完成模型开发和训练的场景,可以将您的模型导入至ModelArts中,创建为AI应用,进行统一管理。 1、如果您是在ModelArts中训练得到的模型,可直接从训练中导入模型。 2、如果您在本地或其他平台训练得到模型,可先将模型上传至OBS,再从OBS中导入模型。

    来自:帮助中心

    查看更多 →

  • 产品功能

    因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算 节点 数据

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型

    来自:帮助中心

    查看更多 →

  • 性能测试方法

    请求的P9999时延,是非常严格的时延指标,表示99.99%的请求执行时间小于该值,仅少量尾部请求超过该值。 测试步骤 注入测试数据 测试前,生成并注入数据库测试数据。基于测试模型三种类型的分布,对三种数据类型进行如下配置: hash类型 key:34位字符,使用字符串前缀+9位数字,

    来自:帮助中心

    查看更多 →

  • 训练性能测试

    训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 实践案例指引

    通过自托管资源池部署应用至云下IDC 通过自托管资源池实现跨Region虚拟机部署 测试计划 基于接口自动化用例和关键字驱动的电商平台测试 基于需求策略使用测试设计 性能测试 城市政务一网通办系统性能测试 JMeter测试工程原生性能压测 全局变量使用全流程 漏洞管理服务 扫描具有复杂访问机制的网站漏洞

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 数据集

    数据。 导入数据要求 建议训练数据和测试数据分成两个实例,方便算法查找训练或测试数据的位置。 训练数据可以是带标签或者不带标签的数据,测试数据一定是带标签的数据,方便评估模型执行效果。 查看学件项目预置的样例数据 等待学件项目创建完成后,在模型训练服务首页的项目列表中,找到创建完成的学件项目。单击项目所在行的图标。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 测试实例性能

    测试实例性能 测试Kafka生产速率和CPU消耗 测试Kafka实例TPS

    来自:帮助中心

    查看更多 →

  • 测试实例性能

    测试实例性能 测试RabbitMQ生产速率和消费速率

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    h框架和昇腾NPU计算资源。 训练后的模型可用于推理部署,搭建大模型问答助手。 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907) 推理部署、推理性能测试、推理精度测试、推理模型量化 介绍主流的开源大模型Llama系列、Qwen系列、Yi系列

    来自:帮助中心

    查看更多 →

  • 总体架构

    工业机器人测试,提供机器人算法测试能力,智能感知测试能力,机器人数字孪生测试能力,机器人性能监测能力。 PLCopen测试,提供了PLC基础功能测试能力,PLCopen合规测试能力,PLC自动代码生成测试能力,电气控制标准化测试能力。 信息模型互通和互操作测试,提供制造执行系统信息模型测试能力,装备互联互通

    来自:帮助中心

    查看更多 →

  • 测试实例性能

    测试实例性能 使用memtier_benchmark测试Redis性能 使用redis-benchmark测试Redis性能 redis-benchmark与memtier_benchmark的差异 Redis性能测试数据参考

    来自:帮助中心

    查看更多 →

  • 测试实例性能

    测试实例性能 测试4.8.0版本RocketMQ实例性能 测试5.x基础版本RocketMQ实例性能

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了