tensorflow 核显 更多内容
  • 导入(转换)模型

    om”格式。 并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 在导入模型前,导入的模型可通过ModelArts在线训练,也可通过本地训练。

    来自:帮助中心

    查看更多 →

  • 算法类问题

    技能SDK或者License如何使用和烧录? 华为HiLens技能是否支持Android 平台或ARM平台上运行? 华为HiLens上可以运行哪些TensorFlowCaffe的模型? 华为HiLens支持自行开发算子吗? 华为HiLens提供的开发环境是什么语言? HiLens Kit是否有图片灰度化接口?

    来自:帮助中心

    查看更多 →

  • 内存

    256MB(128CPU/1024G内存,104CPU/1024G内存,96CPU/1024G内存,96CPU/768G内存);128MB(64CPU/512G内存,60CPU/480G内存,32CPU/256G内存,16CPU/128G内存);64MB(8CPU/64

    来自:帮助中心

    查看更多 →

  • JupyterLab常用功能介绍

    进入JupyterLab主页后,可在“Notebook”区域下,选择适用的AI引擎,单击后将新建一个对应框架的ipynb文件。 由于每个Notebook实例选择的工作环境不同,其支持的AI框架也不同,下图仅为示例,请根据实际显示界面选择AI框架。 图4 选择AI引擎并新建一个ipynb文件 新建的ipynb文件将呈现在左侧菜单栏中。

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    从0制作 自定义镜像 用于创建训练作业(Pytorch+Ascend) 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像

    来自:帮助中心

    查看更多 →

  • 功能咨询

    本地导入的算法有哪些格式要求? 欠拟合的解决方法有哪些? 旧版训练迁移至新版训练需要注意哪些问题? ModelArts训练好后的模型如何获取? AI引擎Scikit_Learn0.18.1的运行环境怎么设置? TPE算法优化的超参数必须是分类特征(categorical features)吗 模型可视化作业中各参数的意义?

    来自:帮助中心

    查看更多 →

  • 如何上传模型至华为HiLens?

    om”格式。 并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 在导入模型前,导入的模型可通过ModelArts在线训练,也可通过本地训练。

    来自:帮助中心

    查看更多 →

  • 在Notebook中通过Dockerfile从0制作自定义镜像用于推理

    r/work/Dockerfile", image_url="custom_test/tensorflow2.1:1.0.0",#custom_test是组织名,tensorflow2.1是镜像名称,1.0.0是tag context="/home/ma-user/work")

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“S

    来自:帮助中心

    查看更多 →

  • 创建Workflow模型注册节点

    模型的类型,支持的格式有("TensorFlow", "MXNet", "Caffe", "Spark_MLlib", "Scikit_Learn", "XGBoost", "Image", "PyTorch", "Template","Custom")默认为TensorFlow。 是 str

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    fit(train_images, train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 快速入门

    myblog 回如下: release "myblog" uninstalled 删除WordPress中mariadb组件使用的存储PVC。 kubectl delete pvc data-myblog-mariadb-0 回如下: persistentvolumeclaim "d

    来自:帮助中心

    查看更多 →

  • 导入/转换ModelArts开发模型

    “TF-FrozenGraph-To-Ascend-HiLens” 支持将Tensorflow frozen graph模型转换成可在ascend芯片上运行的模型。 “Caffe to Ascend” 支持将Caffe模型转换成可在ascend芯片上运行的模型。 Advanced Options 当模

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    /home/work/predict/bin/run.sh PyTorch python2.7(待下线) python3.6 python3.7 pytorch1.4-python3.7 pytorch1.5-python3.7(待下线) pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18

    来自:帮助中心

    查看更多 →

  • 模型输出目录规范

    对不同的转换任务,基于Ascend芯片,其模型输出目录需要满足一定的规范要求。华为HiLens当前对模型输出目录的要求如下: 针对基于Caffe框架的模型,执行模型导入(转换)时,其输出目录说明如下所示。 | |---xxxx.om 转换输出的模型,可用于Ascend芯片,模型文件后缀统一为“

    来自:帮助中心

    查看更多 →

  • 高性能调度

    Volcano是基于Kubernetes的批处理系统。Volcano提供了一个针对BigData和AI场景下,通用、可扩展、高性能、稳定的原生批量计算平台,方便AI、大数据、基因、渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管理等能力。 应用场景1:多类型作业混合部署

    来自:帮助中心

    查看更多 →

  • 创建自动模型优化的训练作业

    创建自动模型优化的训练作业 背景信息 如果用户使用的AI引擎pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64和tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64,并且优化

    来自:帮助中心

    查看更多 →

  • 为什么exec进入容器后执行GPU相关的操作报错?

    为什么exec进入容器后执行GPU相关的操作报错? 问题现象: exec进入容器后执行GPU相关的操作(例如nvidia-smi、使用tensorflow运行GPU训练任务等)报错“cannot open shared object file: No such file or directory”。

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    自动学习 物体检测 基于AI Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“图像分类”的AI模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 内存

    8MB(196CPU/1536G内存,128CPU/1024G内存,104CPU/1024G内存,96CPU/1024G内存,96CPU/768G内存,80CPU/640G内存,64CPU/512G内存,60CPU/480G内存,32CPU/256G内存,16CPU/

    来自:帮助中心

    查看更多 →

  • 快速入门

    创建服务。 kubectl create -f nginx-elb-svc.yaml 回如下,表示服务已创建。 service/nginx created kubectl get svc 回如下,表示工作负载访问方式已设置成功,工作负载可访问。 NAME TYPE

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了