tensorflow sum 更多内容
  • ModelArts支持哪些AI框架?

    CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04 GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow1.13.1 GPU 是 是 conda3-ubuntu18

    来自:帮助中心

    查看更多 →

  • 在Notebook中添加自定义IPython Kernel

    在Notebook中添加自定义IPython Kernel 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    在ModelArts管理控制台,创建一个Notebook实例,镜像选择“TensorFlow-1.13”或“TensorFlow-1.15”。 打开Notebook,在JupyterLab中执行!pip list查看Keras的版本。 图1 查看Keras引擎版本 父主题: 规格限制

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url) x_train, x_test = x_train / 255.0, x_test / 255.0

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    division, print_function, unicode_literals # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持哪些模型?

    并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 如果模型不符合“.om”模型支持的TensorFlowCaffe算子边界,请选择符合要求的模型。 父主题: 技能开发

    来自:帮助中心

    查看更多 →

  • 创建Tensorboard

    创建Tensorboard TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard当前只支持基于TensorFlow引擎的训练作业。同一个用户的多个项目,创建Tensorboard任

    来自:帮助中心

    查看更多 →

  • 准备工作

    定”,完成实例创建。 安装TensorFlow 进入CodeArts IDE Online实例,创建并打开一个空白工作目录,命令如下。 mkdir ai-test 使用pip安装TensorFlow等依赖包,为加快安装速度此处安装的是tensorflow-cpu,命令如下。 1 2

    来自:帮助中心

    查看更多 →

  • 训练输出的日志只保留3位有效数字,是否支持更改loss值?

    INFO:tensorflow:global_step/sec: 0.382191 INFO:tensorflow:step: 81600(global step: 81600) sample/sec: 12.098 loss: 0.000 INFO:tensorflow:global_step/sec:

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用TensorBoard可视化作业

    支持基于TensorFlowPyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。 前提条件 为了保证训练结果中输出Summary文件,在编写训练脚本时,您需要在脚本中添加收集Summary相关代码。 TensorFlow引擎的训练脚

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。 表1 新旧版预置引擎差异 工作环境 预置训练I引擎与版本

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    所示。 表1 ModelArts训练基础镜像列表 引擎类型 版本名称 PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 TensorFlow tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18

    来自:帮助中心

    查看更多 →

  • 创建TFJob

    TFJob即Tensorflow任务,是基于Tensorflow开源框架的kubernetes自定义资源类型,有多种角色可以配置,能够帮助我们更简单地实现Tensorflow的单机或分布式训练。Tensorflow开源框架的信息详见:https://www.tensorflow.org

    来自:帮助中心

    查看更多 →

  • 配置pip源后安装组件失败

    install tensorflow”为例,tensorflow的simple页面为https://mirrors.huaweicloud.com/repository/pypi/simple/tensorflow/。 在页面中可以查看到组件“tensorflow-2.0.0rc

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    华为云EI概览 介绍华为AI的认知与EI的由来,并详细介绍华为云EI企业智能 Python编程基础实验 介绍Python编程基础实验相关知识 TensorFlow介绍 介绍TensorFlow的框架,TensorFlow2.0的基础与高阶操作,TensorFlow2.0中的Keras高层接口及TensorFlow2

    来自:帮助中心

    查看更多 →

  • 如何在CodeLab上安装依赖?

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果需要在其他python环境里安装,请将命令中“TensorFlow-1.8”替换为其他引擎。 在代码输入栏输入以下命令安装Shapely。 pip install Shapely

    来自:帮助中心

    查看更多 →

  • 使用自定义镜像增强作业运行环境

    com/dli-public/spark_notebook-aarch64:3.3.1-2.3.7.1720240419835647952528832.202404250955 创建 自定义镜像 tensorflow为例,说明如何将tensorflow打包进镜像,生成安装了tensorflow的自定义

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 模板管理

    。如果推理服务不使用Tensorflow引擎,实现起来效果不理想。 仅支持提供一个推理服务调用接口,无法满足某些Case的需求,比如:KPI异常检测。 模板优势 使用云端推理框架的“模板管理”具备如下优势: 相对于仅能使用固定类型的模型类型TensorFlow,模板部署模型包的方

    来自:帮助中心

    查看更多 →

  • 使用模型

    IDE Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了