tensorflow lstm例子 更多内容
  • 在开发环境中部署本地服务进行调试

    端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“S

    来自:帮助中心

    查看更多 →

  • 索引使用约束

    from table1 where to_tsvector(c_text) @@ plainto_tsquery('¥#@……&**') and to_tsvector(c_text) @@ plainto_tsquery('某公司 ') and c_varchar is not

    来自:帮助中心

    查看更多 →

  • 算法类问题

    技能SDK或者License如何使用和烧录? 华为HiLens技能是否支持Android 平台或ARM平台上运行? 华为HiLens上可以运行哪些TensorFlowCaffe的模型? 华为HiLens支持自行开发算子吗? 华为HiLens提供的开发环境是什么语言? HiLens Kit是否有图片灰度化接口?

    来自:帮助中心

    查看更多 →

  • 解析文档

    有些词被作为停用词(请参考停用词),这样它们就会被忽略,因为它们出现得太过频繁以致于搜索中没有用处。比如例子中的a、on和it。 如果没有词典识别token,那么它也被忽略。在这个例子中,符号“-”被忽略,因为词典没有给它分配token类型(空间符号),即空间符号永远不会被索引。 语

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    fit(train_images, train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • JupyterLab常用功能介绍

    进入JupyterLab主页后,可在“Notebook”区域下,选择适用的AI引擎,单击后将新建一个对应框架的ipynb文件。 由于每个Notebook实例选择的工作环境不同,其支持的AI框架也不同,下图仅为示例,请根据实际显示界面选择AI框架。 图4 选择AI引擎并新建一个ipynb文件 新建的ipynb文件将呈现在左侧菜单栏中。

    来自:帮助中心

    查看更多 →

  • 开发微服务应用

    微服务应用开发,请参考本章节给出的参考资料链接。 体验微服务引擎最快捷的方式是使用“微服务引擎推荐示例”里面的例子。下载示例,修改配置文件中的微服务引擎地址,AK/SK信息,在本地运行例子,这些例子可以注册到微服务引擎。 Spring Cloud 源码仓库:https://github

    来自:帮助中心

    查看更多 →

  • 开发微服务应用

    料链接。 体验ServiceComb引擎最快捷的方式是使用“ServiceComb引擎推荐示例”里面的例子。下载示例,修改配置文件中的ServiceComb引擎地址,AK/SK信息,在本地运行例子,这些例子可以注册到ServiceComb引擎。 Spring Cloud 源码仓库:https://github

    来自:帮助中心

    查看更多 →

  • 功能咨询

    本地导入的算法有哪些格式要求? 欠拟合的解决方法有哪些? 旧版训练迁移至新版训练需要注意哪些问题? ModelArts训练好后的模型如何获取? AI引擎Scikit_Learn0.18.1的运行环境怎么设置? TPE算法优化的超参数必须是分类特征(categorical features)吗 模型可视化作业中各参数的意义?

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    /home/work/predict/bin/run.sh PyTorch python2.7(待下线) python3.6 python3.7 pytorch1.4-python3.7 pytorch1.5-python3.7(待下线) pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18

    来自:帮助中心

    查看更多 →

  • 在Notebook中通过Dockerfile从0制作自定义镜像用于推理

    r/work/Dockerfile", image_url="custom_test/tensorflow2.1:1.0.0",#custom_test是组织名,tensorflow2.1是镜像名称,1.0.0是tag context="/home/ma-user/work")

    来自:帮助中心

    查看更多 →

  • 如何上传模型至华为HiLens?

    om”格式。 并非所有模型都能转换成功,进行导入(转换)模型操作前,请确认是否为“.om”模型支持的TensorFlowCaffe算子边界,详情请见附录Caffe算子边界和Tensorflow算子边界。 前提条件 在导入模型前,导入的模型可通过ModelArts在线训练,也可通过本地训练。

    来自:帮助中心

    查看更多 →

  • 创建Workflow模型注册节点

    模型的类型,支持的格式有("TensorFlow", "MXNet", "Caffe", "Spark_MLlib", "Scikit_Learn", "XGBoost", "Image", "PyTorch", "Template","Custom")默认为TensorFlow。 是 str

    来自:帮助中心

    查看更多 →

  • 模型输出目录规范

    对不同的转换任务,基于Ascend芯片,其模型输出目录需要满足一定的规范要求。华为HiLens当前对模型输出目录的要求如下: 针对基于Caffe框架的模型,执行模型导入(转换)时,其输出目录说明如下所示。 | |---xxxx.om 转换输出的模型,可用于Ascend芯片,模型文件后缀统一为“

    来自:帮助中心

    查看更多 →

  • 导入/转换ModelArts开发模型

    “TF-FrozenGraph-To-Ascend-HiLens” 支持将Tensorflow frozen graph模型转换成可在ascend芯片上运行的模型。 “Caffe to Ascend” 支持将Caffe模型转换成可在ascend芯片上运行的模型。 Advanced Options 当模

    来自:帮助中心

    查看更多 →

  • 高性能调度

    Volcano是基于Kubernetes的批处理系统。Volcano提供了一个针对BigData和AI场景下,通用、可扩展、高性能、稳定的原生批量计算平台,方便AI、大数据、基因、渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管理等能力。 应用场景1:多类型作业混合部署

    来自:帮助中心

    查看更多 →

  • 创建自动模型优化的训练作业

    创建自动模型优化的训练作业 背景信息 如果用户使用的AI引擎pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64和tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64,并且优化

    来自:帮助中心

    查看更多 →

  • 查询TFJob

    215:20202/cci/tf-benchmarks-cpu:v1", "name": "tensorflow", "ports": [

    来自:帮助中心

    查看更多 →

  • 为什么exec进入容器后执行GPU相关的操作报错?

    为什么exec进入容器后执行GPU相关的操作报错? 问题现象: exec进入容器后执行GPU相关的操作(例如nvidia-smi、使用tensorflow运行GPU训练任务等)报错“cannot open shared object file: No such file or directory”。

    来自:帮助中心

    查看更多 →

  • Hive WebHCat接口介绍

    只获取当前用户提交的job。默认为false。 返回结果 参数 描述 id Job id detail 如果showall为true,那么显示detail信息,否则为null。 例子 curl -ik -u : --negotiate "http://10.64.35.144:

    来自:帮助中心

    查看更多 →

  • statusDescriptors

    x-descriptors: 文本形式公开实例的状态字段。 status: [PATH_TO_THE_FIELD]: [FIELD_VALUE] 例子: - description: 版本 displayName: 版本 path: version x-descriptors:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了