基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    pytorch和tensorflow 更多内容
  • 高性能调度

    间亲和性反亲和性配置计算task优先级Node优先级的算法。通过在Job内配置task之间的亲和性反亲和性策略,并使用task-topology算法,可优先将具有亲和性配置的task调度到同一个节点上,将具有反亲和性配置的Pod调度到不同的节点上。同样是处理亲和性反亲和性

    来自:帮助中心

    查看更多 →

  • 使用pytorch进行线性回归

    numpy as np def handler (event, context): print("start training!") train() print("finished!") return { "statusCode":

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“S

    来自:帮助中心

    查看更多 →

  • Cann软件与Ascend驱动版本不匹配

    0-cann_5.1.0-py_3.7-euler_2.8.3-aarch64 tensorflow_1.15.0-cann_5.1.0-py_3.7-euler_2.8.3-aarch64 pytorch_1.8.1-cann_5.1.0-py_3.7-euler_2.8.3-aarch64

    来自:帮助中心

    查看更多 →

  • 使用JupyterLab在线开发和调试代码

    erLab官网文档。 图3 JupyterLab主页 不同AI引擎的Notebook,打开后Launcher页面呈现的NotebookConsole内核及版本均不同,图3仅作为示例,请以实际控制台为准。 准备训练数据代码文件,上传到JupyterLab中。具体参见上传本地文件至JupyterLab。

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 新增作业(通用编辑器)

    普通python作业运行参数说明 参数 说明 执行引擎 选择AI引擎对应的Python语言版本,根据实际情况配置。 样例1:选择PyTorch,根据实际情况配置对应的Python语言版本,例如:PyTorch-1.3.0-python3.7。 样例2:选择TensorFlow,根据实际情况配置对应的Python语言版本,例如:TF-1

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持哪些模型?

    om”格式的模型上传文件包含caffe模型文件“.caffemodel”“.prototxt”配置文件“.cfg”,或tensorflow的“.pb”模型文件配置文件“.cfg”。 确认待转换的模型算子是否为“.om”模型支持的TensorFlowCaffe算子边界 并非所有模型

    来自:帮助中心

    查看更多 →

  • 创建Workflow模型注册节点

    模型的类型,支持的格式有("TensorFlow", "MXNet", "Caffe", "Spark_MLlib", "Scikit_Learn", "XGBoost", "Image", "PyTorch", "Template","Custom")默认为TensorFlow。 是 str

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() 父主题: 基于CodeArts IDE Online、TensorFlowJupyter

    来自:帮助中心

    查看更多 →

  • 准备工作

    该文件后会出现一个Notebook Editor,可以在里面编辑运行cell。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    俗称“建模”,指通过分析手段、方法技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习或深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎TensorFlowPyTorch、MindS

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    /v2/{project_id}/training-job-engines 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID名称。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 total Integer

    来自:帮助中心

    查看更多 →

  • 查询模型列表

    模型版本。 model_type String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。 model_size Long 模型大小,单位为字节数。 tenant

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    型管理。 模型训练页面说明 “模型训练”页面列出了已有的训练工程、训练服务超参优化服务的列表信息,如图1所示。在该页面,用户可以查看训练工程训练服务的创建信息,新建、编辑、复制或删除已创建的训练工程训练服务。详情请参见表1。 图1 模型训练 表1 模型训练页面说明 参数名称

    来自:帮助中心

    查看更多 →

  • 在Notebook中添加自定义IPython Kernel

    在Notebook中添加自定义IPython Kernel 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda

    来自:帮助中心

    查看更多 →

  • 基于MindSpore Lite的模型转换

    tron官网进行查看,或者对于模型结构中的输入进行shape的打印,并明确输入的batch。 一般来说,推理时指定的inputShape是用户的业务及推理场景是紧密相关的,可以通过原始模型推理脚本或者网络模型进行判断。需要把Notebook中的模型下载到本地后,再放入netron官网中,查看其inputShape。

    来自:帮助中心

    查看更多 →

  • Tensorflow多节点作业下载数据到/cache显示No space left

    server(简称ps)worker两种角色,psworker会被调度到相同的机器上。由于训练数据对于ps没有用,因此在代码中ps相关的逻辑不需要下载训练数据。如果ps也下载数据到“/cache”,实际下载的数据会翻倍。例如只下载了2.5TB的数据,程序就显示空间不够而失败,因为/cache只有4TB的可用空间。

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    tag命令给上传镜像打标签。 #regiondomain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/tensorflow:2

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了