基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    pytorch和tensorflow 更多内容
  • 华为HiLens支持哪些模型?

    om”格式的模型上传文件包含caffe模型文件“.caffemodel”“.prototxt”配置文件“.cfg”,或tensorflow的“.pb”模型文件配置文件“.cfg”。 确认待转换的模型算子是否为“.om”模型支持的TensorFlowCaffe算子边界 并非所有模型

    来自:帮助中心

    查看更多 →

  • 高性能调度

    间亲和性反亲和性配置计算task优先级Node优先级的算法。通过在Job内配置task之间的亲和性反亲和性策略,并使用task-topology算法,可优先将具有亲和性配置的task调度到同一个节点上,将具有反亲和性配置的Pod调度到不同的节点上。同样是处理亲和性反亲和性

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“S

    来自:帮助中心

    查看更多 →

  • 训练迁移快速入门案例

    l等操作映射为NPUhccl对应的操作。如果没有用到GPU的高阶能力,例如自定义算子、直接操作GPU显存等操作,简单场景下可以直接使用自动迁移。 图1 torch_npu工作原理示意图 NPU(Neural Network Processing Unit)GPU在构造结构上存

    来自:帮助中心

    查看更多 →

  • Tensorflow多节点作业下载数据到/cache显示No space left

    server(简称ps)worker两种角色,psworker会被调度到相同的机器上。由于训练数据对于ps没有用,因此在代码中ps相关的逻辑不需要下载训练数据。如果ps也下载数据到“/cache”,实际下载的数据会翻倍。例如只下载了2.5TB的数据,程序就显示空间不够而失败,因为/cache只有4TB的可用空间。

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    /v2/{project_id}/training-job-engines 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID名称。 请求参数 无 响应参数 状态码:200 表2 响应Body参数 参数 参数类型 描述 total Integer

    来自:帮助中心

    查看更多 →

  • 准备工作

    该文件后会出现一个Notebook Editor,可以在里面编辑运行cell。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • TensorFlow-1.8作业连接OBS时反复出现提示错误

    默认的显示等级,显示所有信息 os.environ["TF_CPP_MIN_ LOG _LEVEL"]='2' # 只显示warningError os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 只显示Error 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

  • PyTorch迁移性能调优

    PyTorch迁移性能调优 性能调优总体原则思路 MA-Advisor性能调优建议工具使用指导 MindStudio-Insight性能可视化工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入预处理训练数据集 参考TensorFlow官网的教程,创建一个简单的图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • 在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel?

    在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel? 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5tensorflow1.2.0”的IPython

    来自:帮助中心

    查看更多 →

  • ModelArts的Notebook是否支持Keras引擎?

    ModelArts的Notebook是否支持Keras引擎? 开发环境中的Notebook支持。训练作业模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    tag命令给上传镜像打标签。 #regiondomain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/tensorflow:2

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果使用其他引擎,请将命令中“TensorFlow-1.8”替换为其他引擎的名称及其版本号。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    希望成为人工智能工程师的人员 希望了解华为人工智能产品人工智能云服务的使用、管理维护的人员 培训目标 完成该培训后,您将系统理解并掌握Python编程,人工智能领域的必备数学知识,应用广泛的开源机器学习/深度学习框架TensorFlow的基础编程方法,深度学习的预备知识深度学习概览,华为云EI概览,

    来自:帮助中心

    查看更多 →

  • 新增作业(通用编辑器)

    普通python作业运行参数说明 参数 说明 执行引擎 选择AI引擎对应的Python语言版本,根据实际情况配置。 样例1:选择PyTorch,根据实际情况配置对应的Python语言版本,例如:PyTorch-1.3.0-python3.7。 样例2:选择TensorFlow,根据实际情况配置对应的Python语言版本,例如:TF-1

    来自:帮助中心

    查看更多 →

  • 创建Workflow模型注册节点

    模型的类型,支持的格式有("TensorFlow", "MXNet", "Caffe", "Spark_MLlib", "Scikit_Learn", "XGBoost", "Image", "PyTorch", "Template","Custom")默认为TensorFlow。 是 str

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlowJupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    俗称“建模”,指通过分析手段、方法技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习或深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的AI引擎TensorFlowPyTorch、MindS

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    型管理。 模型训练页面说明 “模型训练”页面列出了已有的训练工程、训练服务超参优化服务的列表信息,如图1所示。在该页面,用户可以查看训练工程训练服务的创建信息,新建、编辑、复制或删除已创建的训练工程训练服务。详情请参见表1。 图1 模型训练 表1 模型训练页面说明 参数名称

    来自:帮助中心

    查看更多 →

  • 保存模型时出现Unable to connect to endpoint错误

    对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckptsummary的读取写入可以通过本地缓存的方式中转解决: import moxing.tensorflow as mox mox.cache() 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了