基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    pytorch和tensorflow 更多内容
  • Cann软件与Ascend驱动版本不匹配

    0-cann_5.1.0-py_3.7-euler_2.8.3-aarch64 tensorflow_1.15.0-cann_5.1.0-py_3.7-euler_2.8.3-aarch64 pytorch_1.8.1-cann_5.1.0-py_3.7-euler_2.8.3-aarch64

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“.om”模型。“.om”

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持哪些模型?

    om”格式的模型上传文件包含caffe模型文件“.caffemodel”“.prototxt”配置文件“.cfg”,或tensorflow的“.pb”模型文件配置文件“.cfg”。 确认待转换的模型算子是否为“.om”模型支持的TensorFlowCaffe算子边界 并非所有模型

    来自:帮助中心

    查看更多 →

  • 查询AI应用列表

    /v1/{project_id}/models 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID名称。 表2 Query参数 参数 是否必选 参数类型 描述 model_name 否 String 模型名称,可支持模糊匹配。 exact_match

    来自:帮助中心

    查看更多 →

  • Tensorflow多节点作业下载数据到/cache显示No space left

    server(简称ps)worker两种角色,psworker会被调度到相同的机器上。由于训练数据对于ps没有用,因此在代码中ps相关的逻辑不需要下载训练数据。如果ps也下载数据到“/cache”,实际下载的数据会翻倍。例如只下载了2.5TB的数据,程序就显示空间不够而失败,因为/cache只有4TB的可用空间。

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“S

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    /v2/{project_id}/training-job-engines 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID名称。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 total Integer

    来自:帮助中心

    查看更多 →

  • TensorFlow-1.8作业连接OBS时反复出现提示错误

    默认的显示等级,显示所有信息 os.environ["TF_CPP_MIN_ LOG _LEVEL"]='2' # 只显示warningError os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 只显示Error 父主题: OBS操作相关故障

    来自:帮助中心

    查看更多 →

  • 准备工作

    该文件后会出现一个Notebook Editor,可以在里面编辑运行cell。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    导入预处理训练数据集 参考TensorFlow官网的教程,创建一个简单的图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

    来自:帮助中心

    查看更多 →

  • 在Notebook中添加自定义IPython Kernel

    在Notebook中添加自定义IPython Kernel 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU)

    tag命令给上传镜像打标签。 #regiondomain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/tensorflow:2

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • 创建Workflow模型注册节点

    模型的类型,支持的格式有("TensorFlow", "MXNet", "Caffe", "Spark_MLlib", "Scikit_Learn", "XGBoost", "Image", "PyTorch", "Template","Custom")默认为TensorFlow。 是 str

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果使用其他引擎,请将命令中“TensorFlow-1.8”替换为其他引擎的名称及其版本号。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    希望成为人工智能工程师的人员 希望了解华为人工智能产品人工智能云服务的使用、管理维护的人员 培训目标 完成该培训后,您将系统理解并掌握Python编程,人工智能领域的必备数学知识,应用广泛的开源机器学习/深度学习框架TensorFlow的基础编程方法,深度学习的预备知识深度学习概览,华为云EI概览,

    来自:帮助中心

    查看更多 →

  • PyTorch迁移性能调优

    PyTorch迁移性能调优 性能调优总体原则思路 MA-AdvisorAscend-Insigh工具使用指导 性能可视化工具与性能分析工具 父主题: GPU训练业务迁移至昇腾的通用指导

    来自:帮助中心

    查看更多 →

  • 新增作业(通用编辑器)

    普通python作业运行参数说明 参数 说明 执行引擎 选择AI引擎对应的Python语言版本,根据实际情况配置。 样例1:选择PyTorch,根据实际情况配置对应的Python语言版本,例如:PyTorch-1.3.0-python3.7。 样例2:选择TensorFlow,根据实际情况配置对应的Python语言版本,例如:TF-1

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlowJupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 查询模型列表

    模型版本。 model_type String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Scikit_Learn/XGBoost/MindSpore/Image/PyTorch。 model_size Long 模型大小,单位为字节数。 tenant

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了